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Abstract:  

Photosynthesis is remarkable, achieving near unity light harvesting quantum efficiency in spite 

of dynamic light conditions and noisy physiological environment. Under these adverse 

conditions, it remains unknown whether there exists a fundamental organizing principle that 

gives rise to robust photosynthetic light harvesting. Here, we present a noise-canceling network 

model that relates noisy physiological conditions, power conversion efficiency, and the resulting 

absorption spectrum of photosynthetic organisms. Taking external light conditions in three 

distinct niches - full solar exposure, light filtered by oxygenic phototrophs, and under sea water - 

we derive optimal absorption characteristics for efficient solar power conversion. We show how 

light harvesting antennae can be finely tuned to maximize power conversion efficiency by 

minimizing excitation noise, thus providing a unified theoretical basis for the experimentally 

observed wavelength dependence of light absorption in green plants, purple bacteria, and green 

sulfur bacteria. 
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In photosynthesis, light energy harvesting begins with the absorption of sunlight. 

Photoexcitation energy is rapidly transferred through an antenna network before reaching the 

reaction center, where charge transfer converts excitation energy into an electrochemical potential 

gradient across the photosynthetic membrane.1 Strikingly, even in the presence of dynamic light 

conditions, rapidly fluctuating molecular structure, and highly intricate energy transfer  

pathways,1-5 the light-to-electron conversion process exhibits near unity quantum efficiency. 

While the delicate interplay of quantum effects with molecular mechanisms of energy management 

have been explored across highly diverse phototrophs,6-9 the elementary connection between 

highly robust light energy harvesting and energetic fluctuations is not established. 

Transforming noisy inputs into quiet outputs represents a general design challenge in 

network architectures including multi-national energy grids,10-14 auditory and visual neural 

networks,15-18 and nanoscale photocells for next generation optoelectronics.19 While network 

inputs exhibit statistical fluctuations (e.g., rapid changes of sunlight absorbed by a leaf or solar 

panel), network outputs may demand a steady rate of information or energy for optimal 

performance (e.g., constant power from the grid to maintain indoor lighting). Statistical 

fluctuations - arising from environmental variations and internal processes - fundamentally limit 

the throughput efficiency of any network. If the flow of energy (power) into a network is 

significantly larger or smaller than the flow out of the network required to optimally match the 

output demand, the network must adapt or be structured in such a way as to reduce the sudden 

over- or under-flow of energy. When the network fails to manage these sudden fluctuations, the 

results may be remarkable (e.g., photo-oxidative stress in photosynthetic light harvesting or 

explosive damage to transformers due to fluctuations in the grid).  

Figure 1 illustrates our model, which employs generalizations of networks to extract the 

essential aspects of photosynthetic light harvesting. We begin by constructing a simple network of 

nodes connected by links, shown schematically in Fig. 1A. The nodes (points at which lines 

intercept) and links (connecting lines) represent physical objects: excitation energy levels and 

intermolecular transfer events within the antenna system, respectively. In photosynthesis, light 

enters the antenna through a large number of pigment molecules, each of which is a member of a 

small set of distinct molecular species (e.g., chlorophyll a and b). Similarly, we limit our model to 

consider light entering the network through two classes of absorbing excitation energy levels, 

depicted in Fig. 1A as nodes A and B with input rates 𝒫𝐴 and 𝒫𝐵. After absorption, excitation 



energy moves between internal nodes of the antenna network, representing the excitation of 

intermediate states within the biological antenna complex.2,8,20 While many pathways through the 

network may share intermediate links, each unique pathway through the network (colored lines 

Fig. 1A) is described by effective transfer rates (probabilities) to the singular output. The inclusion 

of multiple pathways is implemented within these average throughput rates. After passing through 

the antenna network, energy exits through the output O at a rate Ω.  

By analyzing the stochastic flow of excitation energy, we can characterize the antenna 

network by statistical averages (power throughput) and fluctuations in the rate of energy flow, 

which we will call noise (see supplement section S1). The power throughput of the antenna system 

is determined by external light conditions, the absorption characteristics of the absorbing pigment 

molecules (Fig. 1B), or input nodes, and the molecular dynamics of the network. The antenna 

inputs are described in the usual way: light absorption by the pigment molecules is characterized 

by peak widths w, separation  = B - A, and the center wavelength (or average distance) 

between the peaks 0. The solar spectral irradiance (grey line Fig. 1B) - which varies as light 

propagates through air, the canopy, or sea water - gives the average power available within a given 

range of wavelengths. Choosing the wavelength of an absorption peak simultaneously specifies 

both the excitation energy and power entering the noisy antenna. While the excitation energy is 

inversely proportional to wavelength, the absorbed power 𝒫𝐴 or 𝒫𝐵 entering the network is the 

integrated product of the spectral irradiance and the absorption characteristics of the light 

harvesting antenna. 

Noise in the antenna arises from two main sources: external light conditions and inherent 

mismatch between inputs and outputs of the network, which may arise due to fast dynamics in the 

protein structure and corresponding electronic properties. In photosynthesis, an over-powered 

antenna will produce excess energy that can drive deleterious back-reactions.21,22 Conversely, a 

light harvesting network in an under-powered state produces non-optimal output, since the rate of 

energy transfer out of the network is fixed by electrochemical processes.23 Over long periods of 

time, the degree to which the light harvesting network is over- or under-powered is measured by 

the mean-squared deviation of the total input power (through 𝒫𝐴 and 𝒫𝐵) from the optimal output 

power at Ω, or more succinctly, the noise (Fig. 1C) (see supplement section S1). Since the absorbed 

solar power rarely matches exactly the rate of optimal output, the finely tuned network is that 

which most effectively reduces the antenna noise. 



Tuning only the absorption characteristics, our goal is to find a finely tuned network that 

spends the least amount of time in a state for which the input power is too large or too small 

compared to the output of the network, thus maximizing the power conversion efficiency (Fig. 

1C). Fig. 2, our main result, shows three prototypical photosynthetic antennae - the light harvesting 

complex (LHC2) of green plants (Fig. 2A), the light harvesting complex (LH2) of purple bacteria 

(Fig. 2B), and the chlorosome of green sulphur bacteria (Fig. 2C) - and compares their absorption 

spectrum (Figs. 2D-F) to that predicted by our model (Figs. 2G-I) (see supplement section S2 for 

full details). To obtain the results of Fig. 2, our model takes as input the local irradiance spectrum, 

shown as solid grey lines in Figs. 2D-I. Details of internal protein dynamics and the numerous 

potential electronic pathways through the network are embedded in rates pA and pB that couple the 

inputs of the network 𝒫𝐴 and 𝒫𝐵 to the output Ω: pA𝒫𝐴 + pB𝒫𝐵 = Ω. Minimizing the variance 

(noise) of the average distribution pA𝒫𝐴 + pB𝒫𝐵 then yields the optimal absorption characteristics 

for noise-cancellation (see supplement sections S1.1 through S1.3 for mathematical details). 

The absorption peak positions and spectral separation predicted under light conditions in 

air, under canopy, or under seawater (colored lines Fig. 2G, H, I, respectively) show striking 

quantitative agreement with the absorption spectra of these three important phototrophs. Using 

only the external light spectrum and the linewidth w, the predicted peak center position 0 and 

separation  reproduce the measured absorption peaks with 98% accuracy on average (Table 1). 

In the following, we examine the biophysical origins and biological implications of this 

astonishing correspondence.  

To understand our model more deeply, we first identify a striking general feature of 

photosynthetic organisms: In Fig. 2, the photosynthetic pigments do not absorb at the maximum 

solar power. Instead, all three phototrophs exhibit pairs of closely spaced peaks in regions where 

the spectrum shows a steep rate of change with respect to wavelength. Photosynthetic plants look 

green because their antenna complexes absorb light across the visible spectrum including the blue 

and red portions yet reflect green wavelengths (Fig. 2D). Purple bacteria are aquatic oxygenic 

phototrophs.24 They have adapted to sunlight that is filtered through the canopy of trees and 

floating oxygenic phototrophs (grey line Fig. 2E, see supplement section S3) and use a light 

harvesting complex in which bacteriochlorophyll dominates light absorption away from the 

visible, including green (Fig. 2E). Green sulfur bacteria are a geographically diverse group of 

bacteria that are adapted to solar light shining through seawater to depths where it is anaerobic.25 



They do not absorb the peak intensity of this attenuated light spectrum and instead absorb in the 

region of steepest spectral rate of change.  

This remarkable attribute of photosynthetic light harvesting, observed across three 

prototypical phototrophs, is readily understood within the noisy antenna model. To see this, Fig. 3 

shows the behavior of three noise regimes within the antenna network: over-tuned, fine-tuned, and 

poorly tuned. While the light conditions are identical for all three cases (grey lines Figs. 3A), we 

can examine how the noise changes with different absorption characteristics (details of this 

calculation can be found in supplement section S1.4). When the absorbing peaks are spaced too 

closely (Fig. 3A top), the inherent antenna noise can be strongly reduced, and in the limit that 𝒫𝐴 

= Ω = 𝒫𝐵 there are negligible fluctuations in the rate of energy flow (Fig. 3B top left). This lower 

bound to the internal noise cannot be reached in natural photosynthetic antennae, where protein 

dynamics will always drive fluctuations of intermediate excitation energy transfer events. Rather, 

the over-tuned antenna noise is directly proportional to, and thus dominated by, changes in the 

varying light spectrum (Fig. 3B top right). As shown in Fig. 3C top, in the presence of random 

external fluctuations, the distribution of time spent in an over- or under-powered state is flat. In 

the over-tuned antenna, the average input rarely matches the optimal output.  

A poorly tuned antenna (Fig. 3A bottom) is similarly deficient. If the absorbing peaks are 

well separated, the antenna spends most of the time over- or under- powered. When the power 

sources 𝒫𝐴 or 𝒫𝐵 are significantly greater or less than the power sink (𝒫𝐴 >> Ω >> 𝒫𝐵), the noise 

(as evidenced by a histogram of the excitation energy) in the poorly-tuned antenna becomes 

broader as the absorbing peaks become more separated (Fig. 3C bottom). When viewed over long 

times, the poorly tuned antenna spends too little time outputting the optimal power Ω.  

The finely tuned antenna absorbs at specific positions on the spectrum that give rise to 

robust light harvesting even in the presence of both varying light conditions and substantial internal 

noise. When compared to the over- and under-tuned cases, the finely tuned antenna allows for 

intermediate internal noise levels (Fig. 3B middle) yet delivers a narrow distribution of power 

centered at the optimal output Ω (Fig. 3C middle). Robustness in light harvesting is thus the ability 

to output - on average - the optimal rate Ω, yet simultaneously allow for internal noise. 

To determine the optimal absorption spectrum (Fig. 2G-I) for robust light harvesting, we 

compute the spectral positions for which the peaks are as close as possible on the light spectrum 

(favoring reduced internal noise), yet the difference in the absorbed power  = 𝒫𝐴 – 𝒫𝐵 is 



maximized (supporting robustness against external variations). This condition is equivalent to 

maximizing the derivative of the light spectrum with respect to wavelength, thus resulting in 

absorption peaks in regions of steepest slope (see supplementary Section S1.3). The absorption 

spectra, and thus the excitation transitions, are tuned so that the time averaged sum of input 

excitation energy is sharply peaked at the output rate (Fig. 3C middle).  

Underwater phototrophs provide an excellent natural experiment to test the predictive 

strength of our model since the solar spectrum is highly variable as a function of depth.26 Fig. 4A 

shows the light spectrum at various depths below the seawater surface. The light intensity is 

attenuated as depth increases, particularly in the red and infrared, due to absorption and scattering 

in seawater. By comparing the absorption spectra of sub-surface marine phototrophs, such as green 

sulfur bacteria, to those predicted by quieting a noisy antenna, we can explore whether the natural 

photosynthetic absorption spectrum matches our model predictions for the relevant phototroph’s 

preferred depth. 

From the solar light spectra shown in Fig. 4A we calculate an optimization parameter op 

as a function of  and 0. op is a function modified from the calculation of  = 𝒫𝐴 – 𝒫𝐵 such 

that its maxima quiet a noisy antenna (see supplement section S1.3). Fig. 4B shows an example 

color map of the magnitude of op at a depth of 1 m and w = 15 nm. Two maxima clearly emerge 

in the color plot near 0 = 400 and 750 nm. These maxima identify the wavelength characteristics 

of a finely tuned antenna under seawater. By extracting the value of  and 0 at the maximum in 

, we obtain the characteristic absorption spectra of the quiet antenna as a function of seawater 

depth (Figs. 4C–F). Interestingly, we observe that the right-side absorption peaks blueshift as the 

red part of the spectrum is increasingly attenuated, while the absorption peaks on the left side of 

the spectral maximum do not change with seawater depth. 

Quieting a noisy antenna under 2 m of seawater accurately reproduces the absorption 

spectrum of green sulfur bacteria. Green sulfur bacteria use bacteriochlorophyll (BChl) as the 

predominant light absorbing molecules for underwater photosynthesis. We find a close match to 

the absorption spectra of BChl c and BChl e and the ideal absorption spectra at 2 m below the 

surface (compared directly in Fig. 2F, I). In particular, the depth dependent long wavelength peaks 

match with 95% and 98% accuracy (see Table 1).  Although highly adaptable, green sulfur bacteria 

are known to thrive at 1-2 m below the surface.27 Green sulfur bacteria thrive under precisely the 

same conditions for which a light harvesting antenna is finely tuned for solar power conversion.  



The remarkable degree to which we are able to reproduce photosynthetic absorption spectra 

is a surprising result, indicating an underlying organizing principle for light energy harvesting 

systems:  Fluctuations fundamentally limit the efficiency of networks and must be avoided. While 

diverse, phototrophs across many photosynthetic niches may have adapted to build fluctuation-

cancelling light harvesting antennae, onto which other active mechanisms for reducing fluctuations 

can be added. While the connection of our model to natural antenna systems requires detailed 

quantum models, our framework gives new insight into how extinction coefficients, delocalization 

lengths, and radiative rates conspire to reduce noise in natural antennae. Moreover, by developing 

noise-cancelling antennae as a technological foundation, natural and artificial energy harvesting 

networks - from bacteria thriving near deep sea thermal vents to extended power grids - could be 

adapted to efficiently convert noisy inputs into robust outputs. 

 



 

 

Fig. 1. (A), Schematic of a photosynthetic antenna reduced into a network with two input nodes 

A and B with input rates 𝒫𝐴 and 𝒫𝐵, and output O with rate Ω. Energy is absorbed by molecules a 

and b (at rates 𝒫𝐴 and 𝒫𝐵) and is transferred to the output as usable energy.  (B), Schematic two-

channel antenna absorption spectra (yellow and red) and incident blackbody light source (grey). 

The quantities 𝜆0, Δ𝜆, and 𝑤 are, respectively, the center wavelength, distance between peaks, 

and width of the absorption peaks. (C), left, Simulated average excitation energy as a function of 

time within a noisy antenna composed of 10 sets of a and b molecules. right, Time averaged 

histogram of the internal energy (detailed in supplement section 1.4). The antenna is subject to 

internal (fast) and external (slow) fluctuations. Over long timescales the time averaged histogram 

resembles a normal distribution (black line). 

  



 

Fig. 2. (A-C), Molecular structure of the light harvesting antenna LHC2 of green plants, the LH2 

of purple bacteria, and the chlorosome of green sulphur bacteria, respectively. (D), Absorption 

spectrum of LHC2 (blue)31 overlaid on the terrestrial solar spectrum (light grey).28 (E), 

Absorption spectrum of the LH2 complex overlaid on the solar spectrum below a canopy of 

leaves (light grey).32 (F), Absorption spectra of bacteriochlorophyll c (blue) and e (green)33,34 

compared to the solar spectrum at 2 m depth of water (light grey).29,30 (G-I), Predicted ideal 

absorption peaks from optimizing Δ = 𝒫𝐴 − 𝒫𝐵 for the full solar spectrum, solar spectrum 

attenuated through canopy, and solar spectrum attenuated through seawater, respectively (see 

supplement sections S2 and S3 for optimization and spectra details respectively). In (D-I), 

photosynthetic absorption peaks are identified with dashed lines. 

  



 

 

Fig. 3: (A), Absorption peaks for two absorbers a and b overlaid on an ideal blackbody solar 

spectrum (T = 5500 K, grey line) for three cases: top, two closely spaced absorbers; middle, two 

absorbers separated to optimize the noisy antenna; bottom, two widely separated absorbers. (B), 

Simulated excitation energy vs. time for a two-channel antenna with three different values of Δ, 

comparable to the cases shown in A. Left side shows the excitation energy time traces without 

external fluctuations. Right side includes random external fluctuations. (C), Histograms of time 

spent in over- (red) and under-powered (blue) states for the three series in B. top, the distribution 

is flat and favors no value. middle, the distribution is a sharply peaked normal distribution that 

favors Ω. bottom, the distribution is normal, but wider than in the middle panel. 

  



 

 

Fig. 4: (A), Solar spectrum in air and attenuated by various depths of water (labelled).29,30 (B), 

Optimization landscape calculation of op versus center wavelength 𝜆0 and the peak separation Δ𝜆 

for solar spectrum under 1 meter of seawater (w = 15 nm). Red points identify two equally 

favorable maxima, corresponding to a set of peaks on either side of the spectral maximum. (C-F), 

Ideal absorption peaks predicted from the solar spectrum at each depth. Panel D shows the peaks 

extracted from the calculation in B, color coded blue, green, orange, red in order to track peak 

locations with depth. 

 

 

  



Table 1. Absorption peak data versus model calculation. Comparison between peaks identified 

from absorption data (Fig. 2 D, E, F) and the absorption peaks of calculated finely tuned light 

harvesting antennae (Fig. 2G, H, I). The average error is 2.1%. 

 

Peak Name Actual Value  

in nm [eV] 

Calculated Value 

in nm [eV] 

Relative % Error   Reference 

Chlorophyll a 1 428 [2.90] 429 [2.89] 0.23 [0.34] 31 

Chlorophyll b 1 440 [2.82] 459 [2.70] 4.32 [4.26] 31 

Chlorophyll b 2 652 [1.90] 620 [2.00] 4.91 [5.26] 31 

Chlorophyll a 2 660 [1.88] 656 [1.89] 0.61 [0.53] 31 

LH2 band 1 801 [1.55] 783 [1.58] 2.25 [1.94] 32 

LH2 band 2 857 [1.45] 851 [1.46] 0.70 [0.69] 32 

Bacteriochlorophyll c 1 431 [2.88] 426 [2.91] 1.16 [1.04] 33 

Bacteriochlorophyll e 1 461 [2.69] 462 [2.68] 0.22 [0.37] 34 

Bacteriochlorophyll e 2 655 [1.89] 688 [1.80] 5.04 [4.76] 34 

Bacteriochlorophyll c 2 740 [1.68] 728 [1.70] 1.62 [1.19] 33 
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Supplementary Materials 

Section S1. The Noisy Antenna Model 

The problem of converting noisy inputs into quiet outputs has relevance in nearly every practical 

application of network design, ranging from auditory and visual stimulus in neural networks15-18 to multi-

component large scale energy grids.10-14 Environmental variation (e.g., rapid changes of sunlight in time, 

varying stimulus impulses in neural networks, etc.) is a considerable obstacle for efficient network 

operation. If the flow of energy or information into a network is significantly larger or smaller than the 

flow out of the network, then the network must continue operation even with the sudden over- or under-

flow. When the network fails to manage the over- or under-flow of energy or information, the results can 

be dramatic (e.g., electrical brownouts are a common example of an intentional or unintentional drop of 

voltage to some portion of the electrical grid network).  

A robust network must produce a stable output even with “noisy” fluctuating inputs. Classical 

adaptive noise filtering – a technique that utilizes active controls and requires an external modulus of 

control35-39 – is commonly applied to noisy networks. Such strategies have shown success in various 

applications from transportation networks40-45 to electrical networks46,47, yet these strategies incur an 

overall cost. In order to maintain active control, additional energy or information must be fed into the 

network, thus reducing the overall efficiency of energy or information flow.  

In this work, we examine the relationship between light harvesting organisms and the light 

environment, seeking to characterize this relationship using a simplified minimalist model. Such models 

aim to reduce a complex problem into a form for which calculations become more feasible. A famous 

example of such a model is that first proposed by Watson and Lovelock48 to explain global temperature 

stability in the presence of biofeedback, known as the parable of Daisyworld. Here, we ask whether there 

exists a simple network topology with passive noise reduction, and which requires no external assistance 

to function optimally. Remarkably, we find that such characteristics may emerge in exceedingly simple 

networks, and we show that carefully routed energy flow within a simple network architecture results in a 

robust system that inherently quiets internal noise.  

The premise of the model we construct is to achieve an optimal tradeoff between minimal noise 

in energy throughput versus robustness in a noisy environment. To understand why the two are 

antagonistic consider the case of a single input node A that absorbs at wavelength 𝜆𝐴 with power 𝒫𝐴. To 

minimize throughput noise the absorption rate has to match the output rate Ω, i.e. 𝒫𝐴 = Ω. Such an 

architecture has no ability to regulate against external fluctuations. Any change in the ambient conditions 

alters 𝒫𝐴 away from the optimal design. Thus, to gain any ability to adapt the absorber should be at a 

different power, i.e. 𝒫𝐴 ≠ Ω, which in turn introduces noise.  



To construct a minimal model, we first consider the case of a single input node. For 𝒫𝐴 > Ω the 

absorbing channel switches on and off with probability 𝑝𝐴 such that on average input matches output: 

 

𝑝𝐴𝒫𝐴 = Ω   . (1) 

 

This randomness gives rise to fluctuations. The input node is on some of the time injecting more power 

than is needed and off at other times leaving the network idle. The level of fluctuation is quantified by the 

standard deviation, which is the square root of the variance. As is conventional, throughout the following, 

we use the terms variance, fluctuations, and noise interchangeably. The variance, 𝜎2 is 

 

𝜎2 = 𝑝𝐴(𝒫𝐴 − Ω)2 + (1 − 𝑝𝐴)Ω2 . (2) 

 

Using Eq. 1 in Eq. 2 simplifies the variance to 

 

𝜎2

Ω2
=

𝒫𝐴

Ω
− 1 . (3) 

 

As anticipated above, any mismatch between input and output power results in noisy throughput. Any 

external changes that lower 𝒫𝐴 to approach the value of Ω in turn becomes beneficial (𝜎2 approaches 

zero), while an increase cannot be regulated against.  

Thus, a strategy based on a minimum of two input nodes straddling Ω is a natural next step. An 

implicit requirement is that the variations at the two input nodes be correlated. How to satisfy this 

condition depends sensitively on the nature of the external power spectrum from which the energy is 

being drawn. We implement the suggested design principles in two steps: 1) we show that two absorbers 

can reduce noise (Section S1.1, and S1.2) then we calculate the wavelength of the two input nodes that 

optimizes the tradeoff between noise and robustness for various incident power spectra (Section S1.3). 

 

S1.1.  Two-Channel Noisy Antenna Model 

Consider two input nodes at wavelengths 𝜆𝐴 and 𝜆𝐵 with power 𝒫𝐴 > 𝒫𝐵. We further set 𝒫𝐴 >

Ω > 𝒫𝐵 as suggested by the argument above. At any given time only one of three possibilities occur: 1) 

power input from node A with probability 𝑝𝐴, 2) power input from node B with probability 𝑝𝐵, 3) no 

power absorbed with probability 1 − 𝑝𝐴 − 𝑝𝐵. We explicitly exclude the fourth possibility of power input 

from both nodes simultaneously as such a process has input power that is much larger than the output, i.e. 

𝒫𝐴 + 𝒫𝐵 ≫ Ω. This would add large fluctuations without any benefit in robustness due to the fact that the 

ambient power spectrum has a maximum, thus resulting in an upper bound on large fluctuations above Ω. 

Given that we are constructing a consistent minimal model that captures the premise outlined above, and 



the fact that the results are in agreement with observations, provides a validation of this assumption. The 

matching of input and output power gives the following relationship: 

 

𝑝𝐴𝒫𝐴 + 𝑝𝐵𝒫𝐵 = Ω . (4) 

 

The variance is 

 

𝜎2 = 𝑝𝐴(𝒫𝐴 − Ω)2 + 𝑝𝐵(𝒫𝐵 − Ω)2 + (1 − 𝑝𝐴 − 𝑝𝐵)Ω2 . (5) 

 

Using Eq. 4 and Eq. 5, the variance simplifies to 

 

𝜎2

Ω2
= (

𝒫𝐴

Ω
− 1) − 𝑝𝐵

𝒫𝐵

Ω
(

𝒫𝐴 − 𝒫𝐵

Ω
) . (6) 

 

When the second input node is absent, 𝑝𝐵 = 0, we recover the single node result. Adding a second node 

reduces noise for a given 𝒫𝐴. 

To find an optimal solution, one has to ensure that Eq. 4 is satisfied with the generic constraint 

that all probabilities must lie between 0 and 1, i.e. 0 ≤ 𝑝𝐴 ≤ 1, 0 ≤ 𝑝𝐵 ≤ 1 and 0 ≤ 𝑝𝐴 + 𝑝𝐵 ≤ 1. A 

consequence of these restrictions is that the optimization process is rather nontrivial, as it is not possible 

to vary the probabilities and input powers independently. To make further progress we use the inequality 

𝑝𝐴 + 𝑝𝐵 ≤ 1. Thus 

 

𝑝𝐵 ≤ 1 − 𝑝𝐴                            (7) 

≤ 1 − (
Ω − 𝑝𝐵𝒫𝐵

𝒫𝐴
) . (8) 

 

Multiplying both sides by 𝒫𝐴 and solving for 𝑝𝐵 gives 

 

𝑝𝐵 ≤
𝒫𝐴 − Ω

𝒫𝐴 − 𝒫𝐵
 . (9) 

 

Substituting the inequality in Eq. 6, we note that 

 

𝜎2

Ω2
≥ (

𝒫𝐴

Ω
− 1) (1 −

𝒫𝐵

Ω
) . (10) 

 

Since 0 < 𝒫𝐵 < Ω, the least noise occurs when the input node exactly matches the output and generically 

goes up as it gets smaller. For a fixed 𝒫𝐴 this is equivalent to the statement that the noise increases as Δ =

𝒫𝐴 − 𝒫𝐵 increases. Eq. 10 gives a key insight: An optimized network in an environment with correlated 



external fluctuations has 𝛥 just large enough to quiet the noisy inputs. Increasing 𝛥 further adds to the 

internal noise. 

Having established that two input nodes can reduce internal noise compared to one channel and 

offers robustness against external fluctuations, the next question to address is the correct choice of 𝒫𝐴 and 

𝒫𝐵 for a given the ambient spectrum. Before further progress is made, we remark on several important 

conclusions. From Eq. 10 we can deduce that there is always a residual, which varies continuously with 

Δ. If the wavelengths 𝜆𝐴 and 𝜆𝐵 are far apart, the power spectrum in between need not be smooth and the 

fluctuations at each are in general uncorrelated. On the other hand, if 𝜆𝐴 and 𝜆𝐵 are close to each other, it 

is possible to create a robust network that adapts to smooth variation and correlated noise. Thus, one 

needs to find the region of the power spectrum that provides the largest bandwidth for adaptation (i.e. 

large Δ) with small Δ𝜆 = 𝜆𝐴 − 𝜆𝐵. The larger the value of Δ = 𝒫𝐴 − 𝒫𝐵, the larger the available window 

for Ω to be within the bounds 𝒫𝐴 > Ω > 𝒫𝐵 in order to lower noise. It follows therefore that the upper 

limit of external fluctuations that the network can regulate against is Δ. 

 

S1.2. Window of Advantage for the Two-Channel Noisy Antenna Model 

To understand the design parameters of the model, we must first ask: under what circumstances 

does the two-channel model give lower noise than the one channel model? At first look, equation 10 

seems to imply that the second channel always suppresses the variance when compared to equation 3. But 

this comparison only holds if you compare a one channel model with input power 𝒫𝐴 = 𝒫𝐴
𝐼 to a two-

channel model where the higher input power, 𝒫𝐴 = 𝒫𝐴
𝐼𝐼, is the same as the one-channel model, i.e. 𝒫𝐴

𝐼𝐼 =

 𝒫𝐴
𝐼. But this is only one possible comparison, how do we meaningfully compare the one-channel and 

two-channel models? It’s always possible to pick a value of  𝒫𝐴
𝐼 that gives a lower variance than any given 

two-channel model (ignoring whether that value is stable against external fluctuation), so asking if there is 

a one channel model that is better that a given two-channel model is not useful.  

The two-channel model defines an operable range of power 𝒫𝐴 > Ω > 𝒫𝐵 and attempts to 

regulate fluctuations within that range. Thus, it is more useful to understand if - for a given one channel 

model - there is a two-channel operable range that improves the variance. Therefore, to compare the one 

and two channel models we ask: for a given one channel model defined by 𝒫𝐴
𝐼 and Ω is there a two-

channel model with range 𝒫𝐵 < 𝒫𝐴
𝐼 ≤  𝒫𝐴

𝐼𝐼 that has a lower variance for the same output Ω? 

To compare the one and two channel models we examine their respective variances in the 

parameter space with ordering 𝒫𝐵 < Ω < 𝒫𝐴
𝐼 ≤  𝒫𝐴

𝐼𝐼. For a quantitative measure to compare the internal 

noise of the models we subtract the one channel variance (equation 3) from the two-channel variance 

(equation 6, re-written in terms of the width of the operable range Δ), giving: 



Σ =
𝜎𝐼𝐼

2 − 𝜎𝐼
2

Ω2
=  (

𝒫𝐴
𝐼𝐼

Ω
− 1) − 𝑝𝐵

Δ

Ω
(

𝒫𝐴
𝐼𝐼 − Δ

Ω
) − (

𝒫𝐴
𝐼

Ω
− 1) (11) 

When Σ < 0 the two-channel model has a lower variance. For a given one channel model, i.e. fixed 𝒫𝐴
𝐼 

and Ω, Σ varies within the parameter space (𝑝𝐵, 𝒫𝐴
𝐼𝐼, Δ).  

Fig. S1A shows Σ for (𝒫𝐴
𝐼𝐼, Δ) and arbitrarily chosen 𝑝𝐵 = 0.5, 𝒫𝐴

𝐼/Ω = 1.5. The yellow region is 

where Σ ≥ 0 and darker colors indicate Σ < 0 where the two-channel model is advantageous. However 

not all of this parameter space is allowed in the two-channel model or satisfies our ordering 𝒫𝐵 < Ω <

𝒫𝐴
𝐼 <  𝒫𝐴

𝐼𝐼. Therefore, we introduce constraints to the parameter space of Σ. Fig. S1B shows the 

meaningful parameter space, which is bounded by the constraints (shown as colored lines). The first 

constraints come from ordering, as shown by the horizontal blue line, 𝒫𝐴
𝐼𝐼/Ω >  𝒫𝐴

𝐼/Ω and as shown by 

the orange line 𝒫𝐵 < Ω < 𝒫𝐴
𝐼 or equivalently Δ/Ω > 𝒫𝐴

𝐼/Ω − 1. Then we have constraints that come 

from the two channel definition 𝒫𝐴
𝐼𝐼 > Ω > 𝒫𝐵, which requires that 𝒫𝐴

𝐼𝐼 Ω⁄ > Δ/Ω, as shown with the red 

line, and Δ/Ω > 𝒫𝐴
𝐼𝐼 Ω⁄  − 1, as shown with the green line. Furthermore, equation 9 limits the probability 

𝑝𝐵 which translates to the constraint that Δ Ω⁄ ≥ (𝒫𝐴
𝐼𝐼 Ω⁄  − 1)/𝑝𝐵 as shown by the magenta line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1: (A), Calculation of Σ in the unconstrainted parameter space (𝒫𝐴
𝐼𝐼, Δ) for 𝑝𝐵 = 0.5 and 𝒫𝐴

𝐼/Ω = 1.5. 

Darker colors indicate the two-channel model has a noise advantage over the one channel model. (B), The 

meaningful parameter space of Σ that satisfies all the constraints of the model and the ordering, constraints 

shown as colored lines. 



 Examining the parameter space of Σ reveals that there is a window in which the two-channel 

model has lower internal noise than the one channel model. Figure S2 explores the full parameter space of 

Σ by showing (𝒫𝐴
𝐼𝐼, Δ) for several values of 𝑝𝐵 (constant along columns) as a function of various one 

channel models 𝒫𝐴
𝐼/Ω (constant along rows). Examining the limits of 𝑝𝐵 we observe that for small 𝑝𝐵 ≤

0.1 there is little advantage, and for 𝑝𝐵 ≥ 0.9 the parameter space that satisfies equation 9 is extremely 

narrow. This is expected given that either limit the model barely uses one of the channels and is not very 

different from the one channel model. Looking at moderate range of probability, 0.3 ≤ 𝑝𝐵 ≤ 0.7 we see 

that for any given set of parameters there is a window of advantage in which Σ < 0 and that it generally 

grows larger as 𝒫𝐴
𝐼 Ω⁄  increases, which is to say, as the one channel variance increases there is more 

room to improve. Therefore, we conclude that if you have a noisy one channel antenna there is a two-

channel antenna that will have lower internal noise for the same output. What we do not see in this 

parameter space is an absolute minimum in which the two-channel model is always best. Rather, for any 

given one channel model there is a range of possible two channel models which improve upon it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2: Calculation of Σ in the constrained parameter space (𝒫𝐴
𝐼𝐼, Δ) for arbitrary values of 𝑝𝐵 (constant 

across columns) and 𝒫𝐴
𝐼/Ω (constant across rows). 

  



S1.3. Calculation of Optimal Absorption Spectrum in the Noisy Antenna 

The key conclusion of Section S1.2 is that a two-channel model with a finite window in Δ is 

better at suppressing internal noise as compared to a one channel model. On the other hand, to protect 

against external variability, i.e. the fluctuation in the power spectrum incident on the antenna, one needs Δ 

to be as large as possible. Our next step is to determine how these two contradictory properties are best 

satisfied and develop a quantitative way to find the optimal parameters for a Noisy Antenna in a given 

light environment. We start with a careful examination of the properties of the power bandwidth Δ. 

To determine Δ and the wavelengths of the input nodes for optimization, a more realistic model 

for absorption is needed. Unlike the ideal model described above, where all the absorption happens at two 

fixed wavelengths, absorbers generically operate in a narrow window centered at the 𝜆𝐴 and 𝜆𝐵 as shown 

in Fig. 1B. The absorption of the two channels as a function of wavelength, 𝑎(𝜆) and 𝑏(𝜆), are 

parameterized by gaussian functions:  

 

𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) =  
1

𝑤√2𝜋
exp {−

[𝜆 − (𝜆0 + Δ𝜆 2⁄ )]2

2𝑤2
 } (12) 

𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤) =  
1

𝑤√2𝜋
exp {−

[𝜆 − (𝜆0 − Δ𝜆 2⁄ )]2

2𝑤2
 } (13) 

 

where 𝜆0 is the center wavelength between the two absorbing peaks, Δ𝜆 is the separation between the 

peaks and 𝑤 is the width of the peak functions (i.e. the standard deviation). Note that 𝜆𝐴 = 𝜆0 + Δ𝜆/2 

and 𝜆𝐵 = 𝜆0 − Δ𝜆/2. For narrow absorbers, i.e. 𝑤 ≪ Δ𝜆, the precise parametrization - such as Gaussian, 

Lorentzian, or equivalent - does not change the principal conclusions. The input powers, 𝒫𝐴 and 𝒫𝐵, are 

obtained in the usual way by integrating the product of the absorption with the irradiance of the solar 

spectrum, 𝐼(𝜆). In other words, 𝒫𝐴 = ∫ 𝑎(𝜆)𝐼(𝜆)𝑑𝜆 and 𝒫𝐵 = ∫ 𝑏(𝜆)𝐼(𝜆)𝑑𝜆. From these simple 

definitions, the difference in the absorbed power is given by 

 

Δ(𝜆0, Δ𝜆, 𝑤) = ∫[𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) − 𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤)]𝐼(𝜆)𝑑𝜆 . (14) 

 

Eq.14 gives a key parameter as Δ sets the scale of correlated external fluctuations that the noisy antenna is 

robust against. This suggests a strategy for how to calculate the ideal absorbers for a given solar spectrum. 

To insulate from external fluctuations, the first order optimization is a search for the largest value 

of Δ in the parameter space (𝜆0, Δ𝜆, 𝑤). However, this will not quiet a Noisy Antenna as there is a 

spurious maximum that must be considered, yet discounted. In the case of large Δ𝜆, peak a could sit on 

the maximum of 𝐼(𝜆) and peak b could be on the far edge of 𝐼(𝜆). In this scenario 𝒫𝐴 is maximized, and 

𝒫𝐵 is effectively zero, thus Δ is the maximum possible. But this case is clearly outside the window in Δ 



where the two-channel model is able to reduce internal noise and in fact is the most extreme version of 

the poorly tuned case discussed in the main text and illustrated in the bottom panels of Fig. 3. 

Fortunately, the apparent, but spurious maximum is automatically accounted for when realistic 

architecture of the network is implemented. The integrated power that is absorbed at a given wavelength 

is transferred to the output node with a finite transition probability, which in turn is proportional to the 

energy at which the absorption occurs. The energy corresponding to each absorber is 𝐸𝐴,𝐵 =  ℎ𝑐/𝜆𝐴,𝐵, 

where h is Planck’s constant and c is the speed of light. If one channel has a significantly larger energy it 

will be preferred over the other, resulting in the poorly tuned case similar to the single input node 

scenario. Put together our design considerations for the optimization of the Noisy Antenna are as follows: 

  

(1) The two-channel model is advantageous only for a finite range of Δ = 𝒫𝐴
𝐼𝐼 − 𝒫𝐵

𝐼𝐼 within a 

parameter space defined by 𝒫𝐴
𝐼𝐼 and 𝑝𝐵.  

(2) The larger the operable range, Δ, the better the system can protect against external 

fluctuations.  

(3) The typical wavelength of absorption of the two channels should not be too different.  

 

The strategy we adopt to implement these considerations is to determine the operable range for 

which the absorbers are close in energy (Δ𝜆 𝜆0⁄ ≪ 1) and then determine an optimization function that 

gives the maximum possible Δ within this constrained subspace of parameters. 

We can estimate the operable range through careful analysis of Eq. 14 with the line shapes 

specified in Eq. 12 and 13: 

Δ(𝜆0, Δ𝜆, 𝑤) = ∫[𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) − 𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤)]𝐼(𝜆)𝑑𝜆 (15) 

 

= ∫  
1

𝑤√2𝜋
[exp {−

[𝜆 − (𝜆0 + Δ𝜆 2⁄ )]2

2𝑤2
 } − exp {−

[𝜆 − (𝜆0 − Δ𝜆 2⁄ )]2

2𝑤2
 }] 𝐼(𝜆)𝑑𝜆 (16) 

 

=  
2

𝑤√2𝜋
exp {−

𝛥𝜆2

8𝑤2} ∫ exp{−
(𝜆 − 𝜆0)2

2𝑤2
} sinh {

Δ𝜆(𝜆0 − 𝜆)

2𝑤2 } 𝐼(𝜆)𝑑𝜆 . (17) 

 

To make further progress, we invoke empirical, but generic, facts of the spectral irradiance function to 

evaluate Eq. 17. Specifically, we first recognize that the spectrum 𝐼(𝜆) is bounded both in magnitude, 

with a single maximum, and is limited to a finite window in wavelength. Combining this with the 

exp{−(𝜆 − 𝜆0)2/2𝑤2} factor in the integrand of Eq. 17, we conclude that Δ(𝜆0, Δ𝜆, 𝑤) is determined by 

the behavior of the integral in the vicinity of 𝜆0. Importantly, expanding Eq. 17 in the vicinity of 𝜆0 

 



Δ =  
2

𝑤√2𝜋
exp {−

𝛥𝜆2

8𝑤2} ∫ dλ exp {−
(𝜆 − 𝜆0)2

2𝑤2 } sinh {
Δ𝜆(𝜆0 − 𝜆)

2𝑤2 } 

× [𝐼(𝜆0) + (𝜆 − 𝜆0)
𝑑𝐼

𝑑𝜆
|
𝜆0

+
1

2
(𝜆 − 𝜆0)2

𝑑2𝐼

𝑑𝜆2
|

𝜆0

+ ⋯ ] (18) 

 

we see that all even derivatives in the expansion vanish since sinh is an odd function in 𝜆 − 𝜆0. The 

leading contribution to the integral comes from the first derivative of 𝐼(𝜆). Therefore 𝜆0 is in the vicinity 

of the inflection points of 𝐼(𝜆). This yields the intuitive result that maximizing the term puts 𝜆0 in the 

vicinity of the inflection points of 𝐼(𝜆).  

The natural scale for Δ𝜆 is 2√2𝑤 appearing in the leading exponential multiplying the integral. 

While an integration over all 𝜆 is not very meaningful, given that the expansion is only valid near 𝜆0, 

doing so yields 

 

Δ = Δ𝜆 ∑(2𝑤2)𝑛𝐿𝑛

1
2 (−

𝛥𝜆2

8𝑤2)
𝑑2𝑛+1𝐼

𝑑𝜆2𝑛+1
|

𝜆0

∞

𝑛=0

(19) 

 

where 𝐿𝑛
𝑘 (𝑧) is the Laguerre Function which are polynomials in 𝑧 with the highest power going as n. For 

negative z they are also positive definite. Thus, as n increases each successive term adds higher powers of  

𝛥𝜆2

8𝑤2  with the sign determined by the (2n+1)th derivative evaluated at 𝜆0. As anticipated, for Δ𝜆 < 2√2𝑤 

successive terms become smaller and smaller allowing for a finite value of Δ consistent with the two 

channel antenna model. Therefore, we take Δ𝜆 ≤ 2√2𝑤 as the operable bandwidth that satisfies our 

design considerations discussed above. 

To perform a parameter search for the values of 𝜆0 and Δ𝜆 that quiet a Noisy Antenna we want a 

quantity that satisfies our design considerations, i.e. one maximized in the operable bandwidth while also 

maximizing power bandwidth within that range. As before we start by considering Δ as our optimization 

parameter. Fig. S3A shows two sets of peaks, the blue peaks are when Δ𝜆~2√2𝑤 and the green peaks 

when Δ𝜆 is the maximum possible i.e. with one peak on the spectral maximum and one on the edge of the 

spectrum. Evaluating Eq. 14 involves integrating over the peaks, as indicated by the shading, and the 

result is show in Fig. S3B where Δ is maximized when Δ𝜆 is the maximum possible. As expected, simply 

maximizing Eq. 14 will not quiet a noisy antenna, but it provides a framework to do so.  

To develop a better optimization parameter, we integrate Eq. 14 with modified bounds of 

integration: 

 



Δop(𝜆0, Δ𝜆, 𝑤) = ∫  [𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) − 𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤)]𝐼(𝜆)𝑑𝜆
𝜆0+𝑚

𝜆0−𝑚

 (20) 

 

where m is an open parameter that sets a bound to the vicinity of 𝜆0. In other words, we are only 

considering the local contribution to the integral within an interval 2m wide, around a point 𝜆0. As Δ𝜆 

increases, the peaks will fall outside the operable bandwidth and not contribute to the integral. This is 

shown schematically in Fig. S3C, where only the 2m interval, indicated by the shading, is integrated and 

the wide peaks at Δ𝜆𝑚𝑎𝑥 are excluded. The result is shown in Fig. S3D where we see that the 

optimization parameter Δ𝑜𝑝 is maximized on the ideal bandwidth, and as Δ𝜆 → Δ𝜆𝑚𝑎𝑥 the optimization 

parameter Δ𝑜𝑝 → 0 because green peaks are outside the bounds of integration. The choice of m is 

somewhat arbitrary, so long as the interval excludes the poorly tuned case and contains the maxima of the 

peaks when Δ𝜆 = 2√2𝑤, then a change in m will not significantly change the location of the maxima. For 

computational convenience we choose m = 2w without loss of generality, and write   

 

Δop(𝜆0, Δ𝜆, 𝑤) = ∫  [𝑎(𝜆, 𝜆0, Δ𝜆, 𝑤) − 𝑏(𝜆, 𝜆0, Δ𝜆, 𝑤)]𝐼(𝜆)𝑑𝜆
𝜆0+2𝑤

𝜆0−2𝑤

 . (21) 

 

Equation 21 is the integral used to calculate all results within this work. Section S2 discusses this 

optimization for all of the spectra shown in Fig. 2. 

From this analysis we can make two basic predictions about the model that can then be verified 

against real photosynthetic spectra. First, since the leading contribution comes from the first derivative of 

𝐼(𝜆) we expect Δop from Eq. 21 is maximized in the vicinity of the inflection point of the spectrum as a 

function of 𝜆0. We see that all of our optimizations, shown below in section S2, have maxima on the 

spectral inflection points. In addition, in all prototypical phototrophs shown in main text Fig 2, we find 

absorption peaks near inflection points in their solar spectra. Second, since we have shown that 

Δ𝜆~2√2𝑤 is the operable bandwidth, then if the difference between the spectral minimum and maximum 

is of order 2√2𝑤 or less there are no optimal peaks because that section of the spectrum is not wide 

enough. In the case of the purple bacteria, shown in main text Fig. 2E, the left side of the spectrum rises 

from near zero at 700 nm to the spectral maximum at 750 nm, but this rise takes place over a range less 

than 2√2𝑤 ≈ 70 nm. We subsequently do not observe any peaks in the purple bacteria spectrum on the 

left side of the spectral maximum, consistent with our model. 

 

 

 



 

Fig. S3: (A) Shows two pairs of absorption peaks over an ideal blackbody solar spectrum (grey line). The 

green peaks have the maximum peak separation, Δ𝜆𝑚𝑎𝑥 and the blue peaks have the ideal bandwidth Δ𝜆 =

2√2𝑤. (B) The calculation of Eq. 13 for the ideal blackbody in the parameter space (𝜆0, Δ𝜆), as expected 

Δ is maximized at Δ𝜆𝑚𝑎𝑥. (C) Shows the absorption peaks again but limits the integrated area to an interval 

2m wide around 𝜆0, indicated by the shading, as in Eq. 18. (D) The calculation of Eq. 20 for the ideal 

blackbody in the parameter space (𝜆0, Δ𝜆) with 𝑚 = 2𝑤, which is maximized at Δ𝜆 = 2√2𝑤. 

 

S1.4. Discrete Toy Model 

In the main text, we discussed tuning of the noisy antenna in terms of time spent over- and under-

powered. To visualize the noise behavior under different choices of input parameters, we calculate the 

power throughput within a finite system of absorbers as the sum of the absorption events within discrete 

timesteps. By implementing our model using random trials in the discrete limit, detailed below, we can 

illustrate how the correct choice of Δ reduces the sensitivity to external noise while incurring the 

minimum increase in internal noise. The results of this calculation, shown in Fig. 3B and 3C, provide 

intuitive visualization for a key statement of our analytical model (made formally in Section S1): An 

optimized network in an environment with correlated external fluctuations has Δ just large enough to 

quiet noisy inputs. Increasing Δ further adds to the internal noise. 



To explore the analytical model of Section S1.1 within a computationally discrete case, we 

consider a light harvesting network consisting of a small number of absorbing molecules falling into two 

classes - a and b - that undergo discrete absorption events. This illustrative computation considers a group 

of 10 absorbing pairs, which was chosen as an order of magnitude estimate within any physically relevant 

light harvesting network. Our model corresponds to a simplistic network of absorbers with a direct 

coupling to the output set by a single rate for each of the a or b type absorbers, similar to that shown 

schematically in Fig. 1. Since the absorbers are simply connected within the network, the number of 

absorbing pairs sets the noise level.  

At each timestep, the molecules will absorb either 𝒫𝐴, with probability 𝑝𝑎, absorb 𝒫𝐵 with 

probability 𝑝𝑏, or absorb nothing with probability 1 − 𝑝𝑎 − 𝑝𝑏. The probabilities are set by the 

equilibrium condition Eq. 4, 𝑝𝐴𝒫𝐴 + 𝑝𝐵𝒫𝐵 = Ω under the symmetric condition Ω = (𝒫𝐴 + 𝒫𝐵)/2. There 

is a range of possible values of 𝑝𝑎 and 𝑝𝑏 that obey the equilibrium condition. To set the values we define 

a free parameter 0 ≤ 𝜙 ≤ 1 such that 𝑝𝐵 = 𝑝𝐵
𝑚𝑖𝑛𝜙 + 𝑝𝐵

𝑚𝑎𝑥(1 − 𝜙) where 𝑝𝐵
𝑚𝑖𝑛 and 𝑝𝐵

𝑚𝑎𝑥 are the 

minimum and maximum values of 𝑝𝐵; from there 𝑝𝐴 is set by the equilibrium condition. For the 

calculations shown in Fig. 3B and 3C, 𝜙 = 0.05 was used, but as discussed below, all values of 𝜙 give 

fundamentally similar results.  

The inputs to this calculation are the values of 𝒫𝐴, 𝒫𝐵, and Ω. To simulate external fluctuations in 

the light environment we add a slowly varying random fluctuation on top of 𝒫𝐴 and 𝒫𝐵, i.e. 𝒫𝐴 → 𝒫𝐴 +

𝒫𝐴𝛿𝑃 and 𝒫𝐵 → 𝒫𝐵 + 𝒫𝐵𝛿𝑃 for some random fluctuation 𝛿𝑃 that changes every 20 timesteps.  The 

output of the calculation is the sum of the energy absorbed from all the absorbing pairs, which gives the 

excitation energy of the system for that timestep. Due to the equilibrium condition, we expect that the 

average output should be 10Ω, which we see when 𝛿𝑃 = 0 (in the figures, 10Ω is re-nomalized to Ω for 

simplicity). This calculation simulates excitation energy as a function of time, exhibiting fast stochastic 

noise and noise due the random external fluctuations. The histogram of this timeseries is what we show in 

Fig. 3C to illustrate the tuning of the model as a function of Δ.  

This highly simplified calculation captures the key behavior of the model regardless of how it is 

implemented. There are many possible variations. For example, one might consider a system with a 

different number of absorbing pairs, or with different values of 𝜙. In addition, the model can be made 

more or less course-grained by considering multiple absorption events occurring per timestep and 

averaging over them. To increase visual clarity, the calculated data shown in Fig. 3B is averaged over 5 

absorption events. The possible variations suggested above do not change the behavior of the model 

shown in Fig. 3. In all cases when Δ is small the internal noise of the system is decreased but there is no 

protection from the external noise, resulting in an energy distribution that mirrors the random external 

fluctuations. When Δ is large the external fluctuations away from Ω are suppressed but the internal noise 



is large, resulting in a broad distribution of energy. At some intermediate value of Δ external noise 

without excessive internal noise, resulting in a sharply peaked gaussian energy distribution. 

To demonstrate the robustness of the model across many variations, we have developed an 

interactive visualization of this calculation. This visualization is provided to the reader as a python script 

called discrete_toy_model.py which is included in our code (see Section S1.5). With it the user may set 

the parameters (number of absorbers, absorption events per timestep, and 𝜙) of the calculation using 

command line arguments, then use the slider bar to change the relative value of Δ and see the resulting 

noise in the timeseries and histogram. Fig. S4 shows screenshots from this tool for three values of Δ, at 

two different sets of calculation parameters. Though the resulting timeseries are different, the same basic 

behavior as shown in Fig. 3 emerges. In general, as more absorbers and events are added the less noise is 

visible in the timeseries and the histogram is clearer.  

 

S1.5. Noisy Antenna Code 

The code that performs the parameter search of Eq. 21 and the discrete toy model will be released 

alongside this work when published formally. Code instructions have been removed from this section for 

the ArXiv version.  

 



 

 

 

Fig. S4. (A), Three screenshots of the toy model script, discrete_toy_model.py, for different values of Δ 

with 10 absorbers, 2 absorption events per timestep and 𝜙 = 0.01. (B), The same calculations with 7 

absorbers, 1 event per timestep and 𝜙 = 0.45. 

  



Section S2 Ideal Absorption Characteristics from Solar Spectral Data in Distinct Niches  

In order to find the optimum peaks shown in Fig. 2G,H,I we use Eq. 21 to calculate Δ𝑜𝑝 for the 

parameter space defined by (𝜆0, Δ𝜆, 𝑤) using the solar spectrum in three distinct niches as an input. The 

solar spectrum is input as 𝐼(𝜆), and we find the absorption peaks that correspond to the maxima of Δ𝑜𝑝.  

We first start with the solar spectrum at the surface of the Earth, shown as the grey line in Fig. 2D. Fig. 

S5A shows the calculation of Δ𝑜𝑝(λ0, Δλ, 𝑤 = 10 nm) for the solar spectrum (low pass filtered to 

eliminate high frequency spectral noise), and we examine this parameter space to determine the model 

prediction shown in Fig. 2G.  

As discussed in Section S1.3, for a smoothly varying, singly peaked spectrum, like that of a 

blackbody, there would be two clear maxima at the inflection points on either side of the spectral 

maximum. However, the complexities of real spectra make this optimization non-trivial. Examining Fig. 

S5A we see several local maxima on each side of the spectral maximum. This abundance of maxima is 

due to fine features of the solar spectrum, which absorbers with 𝑤 = 13 nm are too narrow to average 

over. Fig. S6 performs this calculation for arbitrary 𝑤. We see that at values of 𝑤 > 20 nm, the 

calculation is not as sensitive to fine features and shows only two maxima of Δ𝑜𝑝, which occur when 𝜆0 is 

near the inflection points on either side of the spectral maximum and the peak separation is Δ𝜆~2√2𝑤. 

In photosynthesis, w is fixed by the intrinsic absorption of the absorbing pigment molecule, which 

is 13 nm for the LHC2. Lacking any way to calculate a priori the ideal 𝑤, we use 𝑤 = 13 nm as an input 

to our model for chlorophyll and pick out optimal parameters by following the basic model prediction. 

Therefore, we search for maxima of Δ𝑜𝑝 on either side of the spectral maximum, shown in Fig. S5A by 

the purple and red points. Notably in Fig. S5A we see two bright peaks in Δ in the 400-450 nm range, 

these peaks are degenerate for the purpose of our model and we pick the one closer to the spectral 

maximum, see the discussion in Section S2.2 for details. The purple and red points correspond to two 

pairs of peaks, which are shown on top of the solar spectrum in Fig. S5B. As expected, the center 

wavelength of these peaks lies in the neighborhood of the maximum slope of the spectrum, and near the 

ideal bandwidth Δ𝜆 ~ 2√2𝑤 ~ 37 nm.  

All of the results presented in Fig. 2, and in the following, were calculated by choosing the 

spectral width of the relevant photosynthetic pigment, and then finding the maximum in Δ𝑜𝑝(λ0, Δλ). The 

optimizations for the terrestrial solar spectrum, the solar spectrum under leaves and the solar spectrum 

under two meters of water are shown in Figs. S5, S7 and S8 respectively.  These optimizations generate 

the main results shown in Fig. 2G,H,I of the main text.  



 

Fig. S5: (A), Calculation of Δ𝑜𝑝(λ0, Δλ, 𝑤 = 13 nm) with the solar spectrum as an input. The red and purple 

points identify the maxima on either side of the spectra maxima. (B), The resulting peak pairs corresponding 

to these maxima displayed as purple and red lines on top of the filtered solar spectrum (black line). 

 

 

 

Fig. S6. Model optimization of the solar spectrum at the surface of the Earth for variable w. The axes of 

each individual panel are the same as the axes in Fig. S5A. 

 



The characteristic spectrum under canopy (Fig. S7) confirms an interesting feature of the noisy 

antenna model: for optimal noise cancellation, the peak separation should be Δ𝜆~2√2𝑤. For the 

optimization shown in Fig. S7 only one pair of peaks is shown, corresponding to the red maximum in Fig. 

S7A on the right-hand side of the spectral maximum. The maximum on the left-hand side of the spectral 

maximum is shown as a purple point, however this maximum does not correspond to a fine-tuned case, 

due to the fact that the left-hand side of the spectrum rises too sharply. The left side of the spectrum rises 

from near zero at 700 nm to the spectral maximum at 750 nm, but this rise takes place over a range less 

than 2√2𝑤, the operable bandwidth discussed in section S1.3. Thus, for the optimum peaks on the left 

side, one peak will be near the maximum, and one near the edge, which is the poorly tuned case. 

Therefore, we do not expect to see a pair of left-side peaks. Indeed, if we look at the absorption spectrum 

of BChl a (Fig. 2E), we see only a pair of right-side peaks, which correspond well with the peaks found in 

Fig. S7. 

 

 

Fig. S7. (A), Calculation of Δ𝑜𝑝(λ0, Δλ, 𝑤 = 25 nm) with the solar spectrum under cover of leaves (the 

light environment of Purple Bacteria) as an input. The red and purple points identify the maxima on either 

side of the spectra maxima. (B), The resulting pair of peaks corresponding to the red maxima, on top of the 

filtered solar spectrum (black line). In this case the purple maximum is disallowed due to the operable 

bandwidth considerations (see discussion in Section S1.3). 



 

Fig. S8. (A), Calculation of Δ𝑜𝑝(λ0, Δλ, 𝑤 = 15 nm) with the solar spectrum two meters underwater (the 

light environment of Green Sulphur Bacteria) as an input. The red and purple points identify the maxima 

on either side of the spectra maxima. (B), The resulting pairs of peaks corresponding to these maxima 

displayed as purple and red lines, on top of the filtered solar spectrum (black line). 

 

S2.1. Comparison of Model with Absorbing Spectra 

 In main text Fig. 2 we compare the ideal absorption spectra predicted by the model with 

measurements of the absorption of the light harvesting antenna of actual phototrophic organisms. The 

absorption measurements shown in Fig. 2D-F are representative of the literature, but here we show that 

the results exhibit general agreement with multiple absorption spectra reported in the literature. To 

demonstrate, we will focus on the measurement for terrestrial plants and compare our model prediction to 

measurements from several sources. Fig. S9A-D show absorption data for the light harvesting complex 2 

(LHC2) found in green plants, gathered from various sources.31,49-51 For all the spectra we identify the 

four-peak structure with red dots and compare them to the model predictions (grey lines). We also 

compare the model directly to the absorption spectra of Chlorophyll a and b molecules, from two sources, 

in Fig. S9E, F.31,52,53 In all cases we see good agreement with our model’s predictions. Fig. S10 shows the 

predictions (grey dots) versus the actual peaks (red dots) for all measurements, and we see that the error 

between the predicted and actual peaks is statistical, not systematic, indicating that our model is in general 

agreement with the literature. 

 



 

Fig. S9. (A-D), Data (blue lines) showing the absorbance of Light Harvesting Complex 2 (LHC2) 

extracted from various sources. Data shown in A is used in main text Fig. 2D. Red dots show maxima in 

the various absorption spectra and grey lines show the model predictions for a given value of w. (E,F) 

Data showing the absorbance of Chlorophyll a (blue line) and b (green line) with identified peaks and 

model predications. 

 



 

Fig. S10. Comparison between the model prediction, grey points, and the absorption peaks identified in 

Fig. S9, red points. We see good agreement between the model and the data across the literature. 

 

Section 2.2. Discussion of Degenerate Peaks in the Model Optimization 

 In the optimizations for the various solar spectra, shown in Figs. S5, S7 and S8, we see that there 

are multiple peaks of Δ𝑜𝑝, meaning that there are multiple solutions for a given solar spectrum. 

Furthermore, in the optimization for the solar spectrum (Fig. S5) and underwater (Fig. S8) we do not pick 

out the largest peaks in Δ𝑜𝑝 for the peaks on the left side of the spectral maximum. To explain this, we 

must examine the peaks on the left side of the solar spectrum in more detail.  

Figure S11 shows the model optimization for two slightly different solar spectra. Fig. S11A 

shows the Δ calculation for the NREL data of the extraterrestrial solar spectrum.28 This is the data we use 

for our terrestrial results to avoid any atmospheric features of the solar spectrum, which are usually 

variable and would themselves be a source of external fluctuation. Fig. S11B shows the Δ𝑜𝑝 calculation 

for a similar NREL spectrum taken at the surface of the Earth (Direct Circumsolar spectrum form the Air 

Mass 1.5 measurement). Comparing the spectra (black lines) we see that there are some small differences 

between the spectra, but they have the same large-scale features. From the colored line traces of Δ𝑜𝑝 we 

see, as in Fig. S6, that at small w there are always two prominent peaks, one near 400 nm and the other 

near 440 nm, and that as w increases, they merge together into a single peak near 425 nm. In Fig. S11A 

the 400 nm peak is clearly larger, but in Fig. S11B they are nearly the same for some values of w. Thus, 

there are two clear peaks in this wavelength range, and their relative amplitudes depend on fine features 

of the solar spectrum that can vary with atmospheric conditions, i.e. the raw amplitudes are not 

particularly meaningful. In other words, for the purposes of the model these two peaks are degenerate. 



 

 

Fig. S11. (A) The Δ𝑜𝑝 optimization for the NREL Extraterrestrial solar spectrum. Colored lines show Δ𝑜𝑝 

for various values of w at Δ𝜆 = 2√2𝑤, compared with the solar spectrum (black line, right axis). (B) The 

Δ𝑜𝑝 optimization for NREL Direct Circumsolar solar spectrum, which is attenuated by Earth’s 

atmosphere. Colored lines show Δ𝑜𝑝 for various values of w at Δ𝜆 = 2√2𝑤, compared with the solar 

spectrum (black line, right axis). 

 

Given two degenerate peaks in the optimization, how do we choose which solution to include in 

the model prediction? Given that the two solutions are equal from the perspective of the model, we look 

at how the peaks line up with the data. Fig. S12 compares the model results for the two degenerate peaks 

with the LHC2 and Chlorophyll data shown in Fig. S9. Fig. S12A shows the solution corresponding to the 

λ0 ~ 400 nm peak, and we see that it exhibits a large and systematic error when compared with all of the 

measurements. In contrast, Fig. S12B shows the solution corresponding to the λ0 ~ 440 nm peak and see 

that it lines up well with the measured data, with random error. Therefore, we conclude that nature uses 

the λ0 ~ 440 nm peak. This analysis works equally well when applied to the left side peaks of the 

underwater spectrum for Green Sulphur Bacteria, which is expected given that the structure of the left 

side of the solar spectrum is largely unaffected by water (see main text Fig. 4A). There are several 

potential hypotheses for why the λ0 ~ 440 nm peak is selected, the simplest being that if the two peaks are 

approximately equally advantageous for quieting a noisy antenna nature might select the one with higher 

power throughput. But testing these hypotheses is beyond the scope of this work. From the perspective of 

our model there are two degenerate solutions for the left side of the solar spectrum and nature seems to 

use the one closer to the spectral maximum. 



 

Fig. S12. (A) Comparison between the model prediction, grey points, and the absorption peaks values 

form the literature, red points, using the λ0 ~ 400 nm peak. (B) Comparison between the model 

prediction, grey points, and the absorption peaks values form the literature, red points, using the λ0 ~ 440 

nm peak. 

  



Section S3: Solar Spectral Irradiance Data 

The direct solar spectrum used in our calculation is the National Renewable Energy Laboratory’s 

(NREL) reference air mass 1.5 spectrum.28 The NREL data includes three possible spectra based on 

different conditions. For the result show in Fig. 2G and S4 we use the ETR spectrum as it is not affected 

by atmospheric or geographic conditions, which may be variable between different locations at different 

times. The NREL atmospheric spectra were considered, however their effect does not change the overall 

result, rather they change the relative values of peaks in the optimization (see section S2.2 for details). 

The solar spectrum under canopy (Fig. S13) was directly measured using a USB4000 Ocean 

Optics spectrometer. This setup records an integrated spectrum from 344 nm to 1039 nm. Integration 

times between 1 and 5 seconds were used. Initial measurements were taken under dense shaded canopy 

producing spectra such as that shown in Fig. S13C. Natural gaps in the foliage allowed unfiltered light to 

pass and generated spectra with large background noise. To mitigate this a variety of green leaves from 

trees native to North America were held together in a filter that was then applied to the spectrometer and 

pointed directly to the sun. 

Fig. S13A shows the attenuation of the spectrum as a function of the number of leaves in the 

filter. The blue line is an average of single leaf measurements for a variety of species. The spectrum is 

strongly suppressed between 400 nm and 700 nm with increasing leaf count. With four leaves (red line in 

S10A) this portion of the solar spectrum is completely attenuated. Applying three stacked leaves 

replicated the spectrum under canopy accurately while avoiding fluctuations and background noise from 

foliage gaps and non-uniform canopy density. 

Differing leaf species show only very minor variations in their transmitted solar spectrum. Fig. 

S13B shows a variety of single species leaf stacks. Single leaves display differences mainly around 550 

nm. In three and four leaf stacks these differences become trivially small and the species type no longer 

has any meaningful effect on the spectrum. All measurements were taken on the University of California 

Riverside campus on a near cloudless day in summer as close to noon as possible. 

 The underwater spectrum was calculated by applying a spectrum attenuation equation54 to the 

NREL standard solar spectrum. The solar spectral irradiance 𝐼(𝜆, 𝑧) is given by 

 

𝐼(𝜆, 𝑧) = 𝐼(𝜆, 0) ∗ 𝑒−𝜎(𝜆)𝑧 (22) 

 

where z is depth under sea water. I (λ, z = 0) is the intensity of the spectrum as a function of wavelength at 

the surface and σ(λ) is the absorption of water as a function of wavelength. After analyzing a variety of 

different data we settled on compiling together data from Buiteveld29 and Kou30 for our calculations. 

These two sets were the most recent, had the highest degree of agreement between them, and covered a 

wide wavelength range. 



 

 

Fig. S13. (A), Average solar spectrum as measured through one, two, three, and four leaves of varying 

species (blue, orange, green, and red lines respectively). (B), Variance between species as leaf count 

increases, colored lines represent different leaf species. (C), Solar spectrum measured directly under 

canopy. The peak at 550nm fluctuates with time as a result of random gaps in the foliage. 

 

  



Section S4. Canopy Depth Dependence 

As discussed in the main text, we can test the noisy antenna model in systems where the solar 

spectrum is modulated as a function of some environmental parameter. While we consider sea water in 

the main text, we can also consider the depth within the canopy. In the case of purple bacteria, we 

consider the solar spectrum underneath a canopy of vegetation, but real canopies are not uniformly thick. 

The results presented in Fig. 2H of the main text are calculated from a spectrum measured deep under 

canopy, i.e. light has to pass through several leaves before it reaches the phototroph. In this case, the 

canopy cuts out almost all of the spectrum below 700 nm. Forests, however, are not always so dense, and 

detailed measurements55 have shown variability with canopy density, composition, and conditions. The 

variability of forests, compared to the uniformity of seawater absorption, means that this test case is not as 

robust a test as underwater spectra, yet is still instructive. 

To simulate the depth of the canopy we consider the number of leaves that light must pass 

through before it reaches the phototroph. Fig. S14A shows measured solar spectra under one to four 

leaves (see section S3 for details). Consistent with previous work55, we see that light at wavelengths 

below 700 nm are strongly suppressed as a function of leaf number. But in the case of absorption by only 

one leaf (Fig. S14C), there would ideally be a set of peaks centered around 590 nm. For absorption by two 

leaves there might still be peaks near 600 nm, but they would absorb very little light. Under solar light 

suppression by three leaves there is no significant optimum at all below 700 nm. Thus, the model predicts 

that a phototroph that is always under minimal canopy would have a second absorber pair near 600 nm. 

While this is a contrived situation, it is a useful demonstration of the predictive elements of our model. 

Such predictions should be extended to other photosynthetic niches to test the detailed dependence of the 

absorption spectrum under particular environmental conditions. 

 



 

Fig. S14: The model calculation for spectra under a leaf canopy, adapted from main text Fig. 4. (A), The 

unfiltered solar spectrum and its attenuation by an integer number of leaves. (B), Calculation of 

Δ𝑜𝑝(λ0, Δλ, 𝑤 = 25 nm) versus center wavelength 𝜆0 and the peak separation Δ𝜆 for the 1 leaf filtered solar 

spectrum. There are four maxima, red points, the first and third from the left are disallowed due to operable 

bandwidth considerations (see discussion in section S1.3). (C-F), Resulting allowed ideal absorption peaks 

predicted from this calculation for the spectra of different canopies. 

 


