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At the single neuron level, information processing involves the

transformation of input spike trains into an appropriate output

spike train. Building upon the classical view of a neuron as a

threshold device, models have been developed in recent years

that take into account the diverse electrophysiological make-

up of neurons and accurately describe their input-output

relations. Here, we review these recent advances and survey

the computational roles that they have uncovered for various

electrophysiological properties, for dendritic arbor anatomy as

well as for short-term synaptic plasticity.
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Introduction
The computation performed by single neurons can be

defined as a mapping from afferent spike trains to the

output spike train which is communicated to their post-

synaptic targets. This mapping is stochastic, because of

various sources of noise that include channel and synaptic

noise; and plastic, because of various sources of plasticity,

both intrinsic and synaptic.

For many years, the dominant conceptual model for

single neuron computation was the binary Mc-Culloch-

Pitts neuron [45]. In this model, the input vector is

multiplied by a weight vector, and then passed through

a threshold (see Fig. 1a). Adjusting synaptic weights and

thresholds lead to neurons being able to learn arbitrary

linearly separable dichotomies of the space of inputs [63].

This model has been conceptually tremendously useful,

but it ignores fundamental temporal and spatial proper-

ties of neurons: the complex dynamics generated by a
www.sciencedirect.com 
panoply of voltage-gated ionic currents; and the fact that

synaptic inputs are stochastic, history-dependent and

spread over a large dendritic tree. In this paper, we will

review recent advances in our understanding of how these

properties affect computation in single neurons.

Computation and dynamics: LNP/GL models
and their relationship to neuronal biophysics
Electrophysiological data in various sensory systems have

been successfully fitted by linear-non-linear-Poisson

(LNP) or generalized linear models (GLM) [65]. In the

LNP model, the inputs are first convolved linearly with a

temporal filter (also called a kernel - the L operation).

This convolution is then passed through a static non-

linearity (the N operation), yielding an instantaneous

firing rate. Finally, an inhomogeneous Poisson process

is generated from the instantaneous firing rate (the P

operation). This model is sketched in Figure 1b. In a

GLM, spikes emitted by the neuron are convolved by

another filter, and added to the input to the static non-

linearity, to account for post-spike effects such as firing

rate adaptation.

Recently, a procedure for approximating arbitrary spiking

neuron models to LNPs has been developed ([54�] — see

[31] for an alternative strategy). The idea is that the static

non-linearity corresponds to the average firing rate of the

neuron, with a stationary input and background noise

with a given statistics. The temporal filter corresponds to

the linearized firing rate (or impulse) response - how the

instantaneous firing rate responds to a small sharp pulse of

input current. Both quantities can be computed analyti-

cally (either exactly or approximately) in several popular 1

or 2 variable simplified spiking neuron models: the leaky

integrate-and-fire (LIF) model [22,59]; the exponential

integrate-and-fire (EIF) and quadratic integrate-and-fire

(QIF) models [23,60]; generalized two-variable integrate-

and-fire (GIF) models [57]; and generalized exponential

models (GEM) [58]. The interest in such simplified

integrate-and-fire-type models has been boosted by

two observations: (i) 2 variable IF models can reproduce

a wide diversity of firing patterns of real neurons

[33,51,71]; (ii) they accurately fit electrophyiological

recordings of real neurons [56,5�,26,46].

The static non-linearities and temporal filters of such

models are summarized in Figure 1c-e. In IF-type models,

the static non-linearity is a monotonically increasing, sig-

moid-shaped, function of the inputs (Fig. 1c1-e1) - note

however that non-monotonic f-I curves can be observed in

a specific class of model neurons [40] as well as in specific

types of real neurons [30]. In the sub-threshold range,
Current Opinion in Neurobiology 2014, 25:149–155
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Figure 1
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Computational properties of single-compartment neurons. a. The classic McCulloch-Pitts neuron performs a weighted sum of its synaptic inputs (each

input i is multiplied by a synaptic weight wi ), and then a thresholding operation. b. The LNP neuron replaces the threshold by the LNP cascade: (L)

convolution with a temporal filter K(t), (N) application of a static non-linearity F, (P) generation of a Poisson process, with an instantaneous firing rate

given by F(K� input). c-d. Static non-linearities and temporal filters of selected simplified spiking neuron models. c: Leaky integrate-and-fire neuron

(LIF). d: Exponential integrate-and-fire neuron (EIF). e: Generalized exponential model (GEM). In this series of panels, the first column shows the static

non-linearity, for two different levels of noise (black, 1mV; green, 10mV). Circles indicate the points at which the temporal filters are computed in the

other columns. The second and third columns show the amplitude and phase of the temporal filter in the Fourier domain (color indicates level of noise

as in first column; full lines, firing rate of 3Hz; dashed line, firing rate of 30Hz). The fourth column shows the temporal filter (or impulse response) for the

same parameters as in the 2nd and 3rd columns.
where firing is induced by fluctuations around the mean

inputs, the gain of the transfer function strongly depends

on the amplitude of the noise. The temporal filter also

strongly depends on the noise (Fig. 1c2-e4). For strong

noise, neurons fire in a highly irregular fashion. In this

regime, one-variable IF-type models behave as low-pass

filters, with a cut-off frequency that depends on membrane
Current Opinion in Neurobiology 2014, 25:149–155 
time constant, background firing rate, and spike generation

dynamics (Fig. 1c2, c3, d2, d3). Two-variable models in

which the second variable represents the dynamics of ionic

currents providing negative feedback on the membrane

potential (IH, IKs, etc) behave as band-pass filters, in a

frequency range determined by the time scales of these

intrinsic currents (Fig. 1e2, e3). For low noise, neurons are
www.sciencedirect.com
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close to oscillators, and consequently temporal filters

develop strong resonances at integer multiples of their

firing frequency (Fig. 1c2-e3). The experimentally

measured temporal filters of cortical neurons [35,7,70�]
are roughly in agreement with this picture, but have an

unexpectedly high cut-off frequency, consistent with very

sharp action potential generation in cortical neurons [52].

Neurons can therefore perform different types of com-

putations, depending on the expression of ionic channels

and the levels of background noise. The operation they

perform can vary from leaky integration (in the absence of

strong negative feedback) to differentiation (with strong

negative feedback, e.g. firing rate adaptation) or even

fractional differentiation in the presence of multiple time

scales of adaptation [41]. Close to perfect integration can

be realized by positive feedback due to calcium-activated

non selective ICAN currents, explaining persistent

activity seen in entorhinal cortex [20,24]. An inverted

integration (hyperpolarization-activated graded persist-

ent activity) can be induced by adding a calcium modu-

lation of H currents [73]. Single neuron bistability can

occur thanks to the non-linear voltage dependence of

NMDA channels [38], and/or Kir channels [64].

Before concluding this brief tour of the potential com-

putational properties of single-compartment neurons, it is

worth emphasizing that both linear filter and static trans-

fer functions can be modified, by changing the expression

of specific channels (intrinsic plasticity, see e.g. [18]) and/

or the amplitude of noise, through non-specific inputs

(leading to ‘gain modulation’, see e.g. [16,32]). In particu-

lar, they could be modified so that the neuron optimizes

the information that it conveys about its inputs [69,11,46].

Impact of dendritic non-linearities on
computation
Dendritic trees are highly complex structures allowing for

computations that are richer than mere linear summation

[39,9,67,42]. Qualitatively, four different types of beha-

vior can arise at the level of local dendritic branches,

shown schematically in Figure 2:

(i) Sub-linear summation due to passive cable proper-

ties of thin dendrites has been observed in cerebellar

stellate cells [3�], which could allow these cells to be

selective to sparse, rather than focused, presynaptic

activity;

(ii) Linear summation of inputs has been observed both

in hippocampal pyramidal neurons [14] and cerebel-

lar Purkinje cells [13]. An approximately linear

summation could be due to a compensation between

passive cable properties and active conductances in

dendrites [14];

(iii) Supra-linear, monostable behavior could arise due

to active conductances in dendrites, triggered by
www.sciencedirect.com 
NMDA receptors, calcium channels or sodium

channels leading to dendritic spikes [36�,42,68�].
Thanks to these active conductances, neurons

become more similar to multi-layer perceptrons:

each dendritic branch functions as a first dendritic

non-linearity (due to NMDA channels); their

outputs are then summed and fed to the soma

(see Figure 2b). Another non-linear unit could be

realized by the apical tuft [36�]. Non-linear inter-

actions between apical and basal regions of the

dendritic tree of cortical pyramidal cells could serve

as a mechanism for cortical associations [36�].
(iv) Bistable behavior of dendritic compartments can be

realized by various positive feedback mechanisms.

L-type calcium channels in a dendritic compartment

of a motoneuron model have been shown to lead to

bistability [6]. NMDA currents can also lead to

bistability, as shown in single compartment models.

Multiple bistable dendritic compartments can lead

to robust multistable behavior in single neurons [27].

Current theoretical descriptions of spatially extended

neurons are similar to the Mc-Culloch Pitts neuron, with

added ‘hidden units’ (corresponding to each functional

dendritic non-linear compartment - see several variants in

Figure 2b). Single neurons therefore become similar to

multi-layer perceptrons. These descriptions however

typically ignore the temporal dimension, which suggests

an extension of the conceptual framework to consider

spatially extended neurons as trees of LN units, followed

by a spike generation process at the soma or axonal initial

segment (a ‘LNLNP’ model, see Figure 2c).

From the computational point of view, it is worth men-

tioning that spatially extended neurons with both sub-

linear [15�] and supra-linear [55] dendrites can compute

linearly non-separable functions, unlike the simple per-

ceptron. Dendrites can therefore greatly enhance the

computational power of neurons. Many types of compu-

tations relying on the spatial structure of dendrites have

been described, such as discrimination of input sequences

[8�], generation of direction selectivity [75], and detection

of looming stimuli [21]. We also note that there have been

significant recent advances in mathematical methods to

reduce spatially extended neurons to reduced models that

preserve the spatial specificity of inputs [28].

Synaptic computation and filtering
The dynamics of synaptic transmission lead to a form of

pre-post cell-class specific short-term plasticity that

shapes amplitudes of successive post-synaptic potentials

(PSPs). This history dependence of the synaptic response

(Fig. 3) can be characterised as exhibiting either: depres-
sion in which the successive synaptic amplitudes decrease

due to depletion of presynaptic resources such as neuro-

transmitter vesicles that take a finite time - of the order of

100s of milliseconds - to replace; or facilitation in which
Current Opinion in Neurobiology 2014, 25:149–155
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Figure 2
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Computations by spatially extended neurons. a: Dendritic input/output transformations: sublinear (black), linear (brown), supralinear (red), bistable

(orange). b: Dendritic static multi-layer perceptron model. Each dendritic branch is modelled as a threshold non-linear device. c: Dynamic multi-layer

model (tree of LNPs, or LNLNP model).

Figure 3
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Filtering of afferents by synaptic dynamics. (a) Neocortical layer-5

pyramidal-cell depressing response to a presynaptic pyramidal cell (PC)

spike train and (b) Martinotti-interneuron (MI) facilitating response to a

presynaptic PC spike train. Experimental data (black; Silberberg et al,

2004) are compared with a model (green and red) of synaptic dynamics

(Tsodyks et al, 1997). Insets show amplitudes of successive EPSPs. (c)

Simultaneous intracellular voltage recordings (Silberberg et al, 2004) of a

PC and MI during a population burst in the PC population. Both cells

have been hyperpolarised to prevent postsynaptic firing and so reveal

the waveforms of the filtered synaptic drive. Note that the different short-

term plasticity results in a signficant delay between the peak responses.

(d) This subthreshold response can be captured by models of the

synaptic dynamics (Richardson et al, 2005) and predict that, in the

presence of a threshold, the MI population will fire with a relative delay to

the PC poplation (e-f).

Current Opinion in Neurobiology 2014, 25:149–155 
the amplitudes increase over a period of 10s of millise-

conds due to accumulation of the calcium required to

trigger vesicle release in the presynaptic terminal [1].

Though connections are typically classified as depressing

or facilitating, they may exhibit a mixture of both depend-

ing on the frequency content of the presynaptic action-

potential train.

These dynamics have been sucessfully modelled by an

extension of the [19] binomial model, featuring n con-

tacts, synaptic efficacy q, probability of release p to

include time constants of recovery from depression tD

and facilitation tF[72,2] allowing for the parameterization

of a broad range of dynamics [10] between different pairs

of cell classes. A number of elaborations of the basic

model have been proposed to capture further experimen-

tal features such as activity-dependent restock rates [25],

refractoriness of presynaptic release sites [53], and vesicle

pool dynamics [44]; see [29] for a recent review of

extended models.

Because synaptic dynamics are specific to pre and post-

synaptic cell pairs it allows differential signalling via the

same axon [43] as a presynaptic cell can make depressing

and facilitating synaptic contacts onto different postsyn-

aptic classes. Response to synchronous bursts of activity

in the neocortical layer-5 pyramidal-cell network can

produce peaks of activity that are separated by 100s of

milliseconds in their postysnaptic targets [66,61] due to

the decreasing or increasing response of depressing or

facilitating synapses, respectively.

Synaptic filtering has been assigned many computational

roles. Depression provides gain-control; during a steady,

high presynaptic rate r the fraction of vesicles available for

release is depleted and the charge delivered scales as 1/r
and so the mean synaptic current, which is charge times
www.sciencedirect.com
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rate, loses its dependency on the presynaptic rate. This

saturation [72,2] has the effect of equalising responsive-

ness to afferent drive over a range of rates. The synapses

nevertheless respond strongly to transient changes: a rate

change Dr will result in a transient synaptic current of

strength Dr/r. Synaptic depression therefore acts as a

differentiator, responding to temporal changes in afferent

drive and has been linked [2] to Weber’s psychophysical

law relating stimulus discrimination to the inverse of its

intensity. The combined negative and positive feedback

from depression and facilitation can also lead to a

resonant effect, with the postsynaptic neuron responding

preferentially to presynaptic bursts [34]. Later analyses

have focussed on the effects of fluctuations at synapses.

The stochasticity of the neurotransmitter-release process

can recover the post-synaptic sensitivity to high-rate

afferents [17] if the mean synaptic current saturates

below the spike threshold. Both depression and facili-

tation have also been shown to provide a broadband

filtering (frequency independence) of modulated Pois-

sonian afferent drive, when the post-synaptic rate is high

[37�]. Together with a recent study [62], these analyses

have highlighted the significant role that short-term

plasticity has in shaping the transfer of information

through neuronal populations.

As the present survey shows, recent years have witnessed

many advances in our understanding of the computational

properties of single neurons. The analysis of neuron

dynamics in a single compartment description has

reached a rather mature stage. It provides a satisfactory

account of different electrophysiological properties and of

their contribution to the information processing of single

neurons in the CNS in vivo when numerous and strongly

fluctuating inputs are received in each integration time

window. This is also the case for short-term synaptic

plasticity with the qualification that it remains to be seen

how the recent advances, mainly gained by the study of

the singularly large Calyx of Held, apply to diverse

synapses in the CNS. Very promising results have also

been recently obtained on the potential contributions of

dendrite dynamics and architecture to various compu-

tational tasks. These come mostly from experiments

performed in vitro. The intense synaptic bombardment

that is present in vivo could drastically change the picture,

since it could potentially linearize the dynamics of per-

turbations around this background activity [4]. Recent in
vivo studies have however demonstrated the presence

and functional relevance of dendritic spikes in
vivo[74�,68�]. A potentially promising direction would

be to extend the analytical methods that have been used

successfully to analyze the stochastic dynamics of point

spiking neurons to spatially extended ones. This would

certainly be helped by the development of simplified

multi-compartment models that capture the essence of

dendritic computations, perhaps along the lines that we

have suggested above.
www.sciencedirect.com 
Another promising avenue for future research is to under-

stand better the consequences of the rich computational

properties of neurons and synapses at the network level.

Theoretical studies have shown how steady states of

network activity are determined by the neuronal transfer

functions, as well as the statistics of synaptic strengths

between the different populations connecting the net-

work, while the dynamics is to a large extent determined

by the neuronal and synaptic temporal filters. In particu-

lar, one expects the speed of the response of a network to

be limited by the cutoff frequency of neuronal temporal

filters, [70�]. Neuronal and synaptic properties also deter-

mine the nature of synchronized oscillations that can

appear at the network level [12]. Short term synaptic

plasticity also gives rise to oscillatory behavior at the

population level [47] and can also be used to maintain

information in short-term memory [50]. Finally, dendritic

non-linearities have been shown recently to allow stable

propagation of synchronous activity in random networks

[49] or generate high-frequency network oscillations [48].

These theoretical developments, allied to the use of

powerful experimental techniques, such as optogenetics

and release of caged compounds, lead one to expect

significant advances in the coming years in the under-

standing of the contribution of neuron-specific properties

and anatomy to network dynamics and information

processing.
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