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Abstract 
The Urban Heat Island (UHI) is a mounting problem in built-up areas, leading to increased 
temperatures, air pollution, and energy consumption. This paper explores the urban determinants 
of the UHI, using two-dimensional (2-D) and three-dimensional (3-D) urban information as input 
to spatial statistical models. The research involves: (a) estimating land surface temperatures, 
using satellite images, (b) developing a 3-D city model with LiDAR data, (c) generating urban 
parameters with 2-D/3-D geospatial information, and (d) conducting spatial regression analyses. 
The data are captured over three grids of square cells−480m, 240m, and 120m− and characterize 
the center of Columbus, Ohio. The results show that solar radiations, open spaces, vegetation, 
building roof-top areas, and water strongly impact surface temperatures, and that spatial 
regressions are necessary to capture neighboring effects. The best regression is obtained with the 
General Spatial Model (GSM), which is then used to simulate the temperature effects of different 
greening scenarios (green roofs, greened parking and vacant lots, vegetation densification) in the 
center of Columbus.  The results demonstrate the potential of such models to mitigate the UHI 
through design and land-use policies.  
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1. INTRODUCTION 
Projections by the United Nations suggest that 60% of the world’s population will reside 

in urban regions by 2030. The resulting expansion of impervious surfaces is likely to intensify 

the urban heat island (UHI), whereby temperatures in urban core areas are higher than in 

surrounding suburban and rural areas. The UHI induces heat stress, tropospheric ozone 

formation, and resulting health problems. Higher temperatures lead to increased electricity 

demand for air conditioning, which, in turn, raises power plant pollution and greenhouse gas 

emissions. In addition, the UHI may increase water temperatures, resulting in water ecosystems 

impairment.  It is clear that mitigating UHI impacts requires comprehensive planning strategies 

accounting for the effects of urban morphology, infrastructure, and greening, on the UHI.  

However, a lack of understanding of these effects has been a primary obstacle to implementing 

such strategies.  

The objectives of this paper are to: (1) specify and estimate novel statistical regression 

models that account for both spatial neighborhood effects and the simultaneous effects of several 

urban characteristics on land surface temperatures derived from satellite imagery; (2) assess 

which grid scale used to capture the data yields the statistical model with the best explanatory 

and predictive power; and (3) use the best regression model to numerically simulate UHI-

mitigating strategies in an urban design and planning context.  To model the statistical 

relationship, both two-dimensional (2-D) and three-dimensional (3-D) information is used to 

represent the complex geometric structure of urban centers, with an application to the urban core 

of Columbus, Ohio. Earlier UHI research has primarily used 2-D information, such as land uses 

delineated with satellite imagery and building ground floor boundaries produced by Geographic 

Information Systems (GIS). In the case of homogeneous land uses, this data may be sufficient to 

predict surface temperatures (Carlson and Arthur, 2000). However, 3-D information is necessary 

to analyze more complex sites, including dense building clusters (Unger et al., 2004; Unger, 

2006). LiDAR data are used to generate 3-D urban geometry characteristics. A hierarchy of 

grids, with cell sizes of 480m, 240m, and 120m, is used to integrate all the data. A spatial 

regression model capturing neighborhood effects and the relationship between surface 

temperatures and the geometric characteristics and other factors of the built environment is 

formulated and estimated for these different grids.  The best model is then used to simulate 



different greening scenarios for the center of Columbus, illustrating its potential for mitigating 

the UHI.  

The remainder of the paper is organized as follows. Section 2 consists in a review of the 

relevant literature. Section 3 describes the study area, data sources, and data processing. 

Regression models are formulated and estimated in Section 4.  The simulations of greening 

scenarios are presented in Section 5.  Section 6 discusses remaining issues and areas for further 

research.  Section 7 concludes the paper.  

 

2. LITERATURE REVIEW 
 There has been an explosive growth in the research literature on the UHI in recent years. 

Using the search engine Google Scholar and typing in “urban heat island” returns 25,300 distinct 

journal articles, book chapters, books, working papers, and professional reports, as of October 9, 

2013, with 86.5% of these works produced since 2001.  Basic reviews of research on the 

energetic basis of the UHI and on satellite-derived thermal remote sensing of urban areas can be 

found in Oke (1982), Roth et al. (1989), Voogt and Oke (2003), and Arnfield (2003).  There are 

two streams of modeling research attempting to explain the observed UHI patterns: numerical 

and statistical.  Numerical models involve basic physics equations related to the conservation of 

mass and energy and the ideal gas law.  See Lynn et al. (2009) for an example of such a model 

used to simulate UHI mitigation strategies.  In order to inform the statistical methodology 

presented here, the focus of this review is on statistical analyses of the UHI. 

Previous research shows that vegetated areas have lower surface temperatures than 

impervious ones (Owen et al., 1998). Oke (1988) reports a 2°C air temperature difference. Li et 

al. (2010) show that locations further away from a highway are associated with lower surface 

temperatures. Ca et al. (1998) report that the surface temperatures of a grass field in a park are 

19°C lower than those of impervious surfaces.  Landsberg and Maisel (1972) were among the 

first to show that impervious materials lead to a 1~2°C difference between rural and urban areas.  

Yuan and Bauer (2007) find a very strong linear relationship (R2>0.95) between mean 

surface temperature and the percentage of impervious areas. Xiao et al. (2007) also find a high 

correlation (>0.8) between impervious surfaces and surface temperatures. Trees on impervious 

surfaces help decrease temperatures by increasing the leaf-air vapor pressure gradient. The 



transpiration model by Kjelgren and Montague (1998) shows that evaporation from leaves helps 

decrease urban temperatures.  

Remotely-sensed imagery has been increasingly used to investigate the effects of 2-D 

surface characteristics on urban temperatures. Chen et al. (2006), Katpatal et al. (2008), and 

Amiri et al. (2009) generate maps displaying land use/land cover (LU/LC) patterns based on 

images captured by Landsat Thematic Mapper (TM or ETM+), and find that urban expansion 

reduces the amount of biomass helping to control surface temperatures. Jenerette et al. (2007) 

show that surface temperature differences within a city are correlated with the amount of 

vegetation. Using temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) satellite images and LU/LC classification, Kato and Yamaguchi (2007) report that 

heat storage capability is larger in highly urbanized areas than in sprawling residential areas.  

Urban geometry relating to the height and spacing of buildings is another factor for UHI 

formation. This height-spacing relationship is also called the urban canyon effect, affecting air 

circulation, wind flow, and thermal energy absorption (Oke, 1981; Bärring et al., 1985; Oke, 

1988; Eliasson, 1996; Bottyán and Unger, 2003). Dense built-up areas cannot easily release heat 

energy into the atmosphere, due to the lack of open space resulting from building obstructions. 

Tall buildings impede wind flows and their cooling effects, and isolate hot air within the canyon. 

Moreover, when solar energy reaches building surfaces, it is absorbed into the walls. The 

temperature of the air surrounding these walls is then increased.  The Sky View Factor (SVF) has 

been widely used to measure the visible sky (Unger et al., 2004; Grimmond, 2007; Gál et al., 

2009; Unger, 2009). Grimmond (2007) indicates that reducing SVF increases absorption of solar 

radiation onto surfaces, decreases terrestrial radiation loss, decreases total turbulent heat 

transport, and reduces wind speeds, which all directly lead to increased surface temperatures. 

Unger et al. (2004) found that the difference in mean temperature between the maximum SVF 

(=1) and a minimum SVF (=0.66) is around 4.4°C. Gál et al. (2009) show that there is a strong 

linear and negative relationship between annual mean temperatures and SVF. The size and shape 

of building structures are prominent features explaining surface temperatures. Giridharan et al. 

(2004) show that areas of dense and tall buildings have 1~1.5°C higher temperatures (measured 

at 1.5m to 2m above the ground) than other areas.  

The shortcomings in previous UHI research are as follows. First, it mostly relies on 2-D 

information, such as building footprints, land uses, and census information, while not accounting 



for 3-D physical factors. Little research on the UHI has taken place in 3-D space because of data 

and other technical problems. Second, earlier research has used a small set of variables. For 

example, Carlson and Arthur (2000) use a vegetation index to explain the UHI. Unger et al. 

(2004) explain UHI intensity with the SVF variable, at the exclusion of other variables. Third, 

earlier research involves simple Ordinary Least Squares (OLS) regression models, excluding 

spatial effects from adjacent areas (Jauregui, 1990; Ca et al., 1998; Shashua-Bar and Hoffman, 

2000). Spatial phenomena often involve spatial dependence, with values observed at one place 

being related to values at adjacent places. In order to avoid the estimation bias inherent in OLS 

models and to consider spatial and neighboring effects, it is necessary to specify and estimate 

spatial regression models.  

 

3. STUDY AREA, DATA SOURCES, AND DATA PROCESSING 
This research focuses on a densely-built section of the City of Columbus, Ohio, an area 

of 46.5 km2 including the Central Business District (CBD). The Scioto and Olentangy rivers flow 

from north to south, and merge into one channel near the CBD. There are parks and outdoor 

recreation sites in the southern part of the study area, which also includes residential areas. A 

continuous population growth since 1950 has led to much building construction, resulting in 

increased surface temperatures by at least 5˚C since 1986.  The proposed UHI models are based on 

the following data: (1) building features (building ground floor area, height); (2) factors that are 

directly derived from the 3-D geometry of the city (sky view and solar radiations); (3) 2-D land-use 

information (NDVI and water); and (4) surface temperatures. This information is extracted from 

geospatial data sources, such as LiDAR, Landsat TM, and existing GIS datasets.  These various 

datasets are then integrated into grids of various scales.  The base year of the analysis is 2007. 

3.1. Buildings 
In order to represent the topology and geometry of built-up environments, it is first 

necessary to develop a 3-D city model. Buildings are delineated as box-shaped, which is an 

acceptable approximation of real building shapes in the case of Columbus CBD (Figure 1.a). 

Three geospatial data sources are used: (1) LiDAR data to estimate each building height, (2) GIS 

building footprints to describe their ground-level boundaries, and (3) a Digital Terrain Model 

(DTM) to estimate terrain elevation from sea level. The LiDAR data have been gathered over the 



period 2006-2008. The 3-D city model is developed in two steps: filtering LiDAR data and data 

integration.  

First, filtering LiDAR data by using its properties (e.g., pulse, intensity, and 

classification) removes unnecessary data and reduces the size of the LiDAR dataset. A LiDAR  

pulse helps detect single and multiple surface layers. Although a tree canopy has multiple layers 

of leaves and branches, most building roofs are composed of a single layer. From the intensity of 

a LiDAR pulse, it is possible to distinguish rigid materials from other types of surfaces.  

 

 

 
 

Figure 1:  Building and 3-D Factors  
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The process of filtering the intensity of LiDAR data requires numerous trials because intensity 

values are relative.  Pulses with intensity greater than 50 are assumed to detect hard surfaces. 

This filtering process helps classify and extract non-ground data, such as building roofs and the 

tops of trees. Although the GIS footprints of the buildings could be used alone to cookie-cut the 

LiDAR data to generate 3-D models, filtering these data first removes outlier observations and 

helps reduce GIS computational time. 

Second, data integration involves the merging of LiDAR data and the GIS building 

footprints (from appraisal database) that define building boundaries. The spatial joining 

capability of ArcGIS is used to perform this procedure. The highest point among the LiDAR 

points within each building footprint is used to measure its height. The actual building height is 

then estimated by excluding the influence of topography, using the DTM.  

The building ground floor area, BGFA, is the sum of the ground floor areas of all 

buildings in a given unit area (cell), and is equal to the total building rooftop areas because 

buildings are all box-shaped, with: 

 BGFA = ෍ a୧

୬

୧ୀଵ
 (1) 

where ai is building i ground floor area in a given cell, and n the number of building footprints. 

Figure 1.b illustrates this computation, and Figure 2.c displays the BGFA values over the study 

area. 

3.2.   Sky View Factor and Solar Radiations 
Sky View Factor 

The Sky View Factor (SVF) is computed as the ratio of visible sky within a given 

reference circle, and is used to measure the extent of 3-D open space.  See Figures 1.c and 1.d. 

Three types of SVF measures are computed - Ground SVF (GSVF), Roof SVF (RSVF), and 

Total SVF (TSVF).  GSVF and RSVF are illustrated in Figure 1c: GSVF pertains to points 1, 2, 

and 3, and RSVF to points 4 and 5. GSVF measures SVF at ground-level, and represents the 

pedestrian viewpoint. RSVF measures SVF on the roof of buildings.  Both GSVF and RSVF 

vary from one point to another due to the variety of building locations, shapes, and sizes.  

ArcView SVF extension is used to calculate each SVF value.  Technical details and 

trigonometric formulas are available in Li et al. (2004) and Gal and Unger (2008).  Comparisons 

of this method with alternative approaches are also discussed in Gal et. al (2009) and Hammerle 



et. al (2011).  The total number of SVF measurement points over the study area is 9,152, 

including 7,682 points at ground level and 1,470 at building-roof level.  As there are 2,288  cells 

of 120m size, there is an average of 4 measurement points for each such cell.  Let Ng and Nr be 

the numbers of ground-level and roof-top SVF measurement points within a cell.  TSVF for this 

cell is a summary index of SVF and is calculated as follows:  

 

TSVF = ∑ i=1→Ng GSVFi  +   ∑ i=1→Nr RSVFi    (2) 

 

where R𝑆𝑉𝐹௜ or GSVFi is the SVF value at point i.  The patterns of TSVF computed for different 

grids are illustrated on Figure 3.b.   

 Solar Radiations 

A solar radiation map is generated by the area solar radiation tool in ArcGIS Spatial 

Analyst extension, requiring the rasterization of the 3D city model and the identification of the 

latitude of the site (39.962). The tool accounts for the shading of buildings.  Solar radiation 

calculations are performed in four steps: (1) generating a viewshed at each observation point; (2) 

applying a sunmap, tracking the position of the sun to estimate direct radiation; (3) applying a 

skymap for indirect radiation; and (4) overlaying the viewshed with the sunmap and the skymap 

(ESRI, 2009). The time is set for all hours on July 6, 2007. Diffusivity and transmissivity are set 

according to clear-sky conditions (the default value), corresponding to the weather conditions on 

July 6, 2007. The observation interval for solar radiation (SR) calculations is 30ft (9m), and the 

total number of solar radiation values is 394,774. Total solar radiation (TSR) and average solar 

radiation (ASR) are computed as follows:  

 
𝑇𝑆𝑅 = ෍ 𝑆𝑅௤

௉

௤ୀଵ
 (3) 

 𝐴𝑆𝑅 = 𝑇𝑆𝑅
𝑃 × 𝐴 (4) 

where 𝑆𝑅௤ is the solar radiation at observation point q and P is the number of observation points 

in a cell. A is the area of the cell. The unit is watt hours per square meter (WH/m2).  The values 

of ASR over the study area are displayed on Figure 2.d.  

 

 



3.3. Land-Use Information 
Normalized Difference Vegetation Index (NDVI) 

The NDVI has been extensively used to measure vegetation cover. As discussed in 

Section 2, the NDVI has been used in many UHI statistical studies, because of the cooling effect 

of vegetation related to latent heat vaporization, and the convective cooling of tree canopies that 

are well ventilated and readily lose heat by wind.  The NDVI is computed as a ratio involving 

different bands reflecting the percentage of vegetative ground cover, in particular the visible 

wavelength band (Red: 0.6µm~0.7µm) and the Near Infra-Red band (NIR: 0.7µm~1.1µm) of 

Landsat TM, because vegetation has a high spectral reflectivity of solar radiation on the NIR 

band. NDVI ranges from -1 to 1. Values between 0.5 and 1 commonly indicate dense vegetation 

cover (Carlson and Ripley, 1997). Higher NDVI values indicate healthy vegetation coverage, 

whereas lower NDVI values point to water and impervious materials. The equation defining 

NDVI is: 

 NDVI = NIR − Red
NIR + Red (5) 

The basic NDVI values (∈ [−1, +1]) are proxies for the amounts of vegetation in the 30m cells. 

The NDVI values for larger cells are obtained by summing up the NDVI values of the 30m cells 

included in the larger cell. Therefore, the NDVI values used in the three grids are denoted 

TNDVI (Total NDVI). Figure 2.b illustrates the variations of NDVI for 30m cells over the study 

area. Red cells stand for vegetation-covered areas, while blue cells represent non-vegetated 

areas. The map points to the lack of vegetation in the CBD, but also to many vegetated areas 

around it, corresponding to residential areas and parks. 

Water 

Water bodies are considered separately from the NDVI. Although negative NDVI values 

may identify water, they may also represent impervious surfaces. The water polygons are 

identified by GIS, and represent the Olentangy and Scioto rivers. Water covers 3.61% of the 

study site. While this area is small, its impact on temperatures may be significant. 

 

 



 

Figure 2:  Land Surface Temperature, NDVI, Building Footprint, and Solar Radiation  

 3.4. Land Surface Temperature (LST) 
LST represents the average surface temperature in a given unit area. This information is 

derived from the thermal band #6 captured by Landsat TM (July 6, 2007), with a 30m resolution. 

Although the original spatial resolution of the thermal (infrared) band is 120m, Ohioview has 

distributed 30m thermal images to match the resolution of the other bands by re-sizing the 

images (www.ohioview.org). These 30m LST values are averaged out over larger cells to create 

larger grids (e.g., a 120m×120m cell involves averaging out over sixteen 30m×30m cells). 

The thermal band digital number (DN) must be numerically converted to a radiometric 

scale. The numerical conversion method proposed by the U.S. Geological Survey (USGS) has 

been widely used to create temperature maps, and has been updated by the Earth Resource 

Observation System Data Center (EROS). Equations (7) and (8) are used to perform this 

conversion (Chander and Markham, 2003):   

b. NDVI c. 
Building 

d. Solar Radiation (WH/m2)  a. Land Surface Temperature 
(oC) 



 𝑇 = 𝐾ଶ 𝑙𝑛 ቀ௄భ
௅ഊ

+ 1ቁൗ , (6) 

 𝐿஛ =  𝐺୰ୣୱୡୟ୪ୣ × 𝐷𝑁 + 𝐵୰ୣୱୡୟ୪ୣ, (7) 

 

where 𝑇=surface temperature, 𝐿஛= spectral radiance at the sensor’s aperture, 𝐾ଶ= 1260.56°K, 𝐾ଵ= 

607.76 W/(mଶ ∙ 𝑠𝑟 ∙ 𝜇m), 𝑠𝑟=steradian (SI unit of solid angle), 𝐺୰ୣୱୡୟ୪ୣ  = 0.055158 W/(mଶ ∙ 𝑠𝑟 ∙
𝜇m)/DN, and 𝐵୰ୣୱୡୟ୪ୣ= 1.2378 W/(mଶ ∙ 𝑠𝑟 ∙ 𝜇m). 

Equations (6)-(7) estimate surface temperatures under the assumption of uniform 

emissivity.  To correct for the effects of variations in land cover emissivity, the emissivity-

corrected surface temperature 𝑇ఌ is computed as follows:   

 

 𝑇ఌ = 𝑇 ൜1 + ൤𝜆 ∙ 𝑇
𝜌 ⋅ ln (𝜀)൨ൠൗ  (8) 

 𝜀 = 0.004𝑃௏ + 0.986, (9) 

 𝑃௏ = ൬ 𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼௠௜௡
𝑁𝐷𝑉𝐼௠௔௫ − 𝑁𝐷𝑉𝐼௠௜௡

൰
ଶ

, (10) 

 

where λ is the wavelength of emitted radiance (11.5μm), ρ=1.438×100-2m K, 𝜀 the emissivity, 

and 𝑃௏ the vegetation proportion. For more details, see Carlson and Ripley (1997), Stathopoulou 

and Cartalis (2009), and Kim (2013). Figure 2.a represents the pattern of surface temperatures 

computed over the study area.  LST ranges between 16 oC (water in the two rivers and very high-

density vegetation clusters) and 40 oC (tall buildings and impervious areas). 

3.5. Data Integration and Hierarchical Grid Structure 
The various data sources have different spatial resolutions. For example, satellite images 

captured by Landsat TM have a 30m spatial resolution. Vector images of building footprints 

(LiDAR) have a higher resolution (less than 3m). Data overlay on uniform grids makes it possible 

to combine these varying input datasets, and to create a unique database, which then provides the 

input to statistical model estimation (Figure 3.a). The need for increasingly fine geographical 

scales emerges in the literature on the impacts of urban characteristics on the UHI. While some 

of the earlier research has led to meaningful statistical relationships (e.g., NDVI and 

temperature), the large spatial units generally used cannot properly reflect detailed urban 



characteristics and spatial relationships. To examine such relationships, a small grid is necessary 

to properly reflect variability over space. In this research, three different grid cell sizes -480m, 

240m, and 120m- are considered, as illustrated in the case of TSVF on Figure 3.b.  

 

 
 

Figure 3: Data Grid Overlay and Hierarchical Scales  

 
Descriptive statistics for all the variables and the three grids are presented in Table 1. 

When shifting from one grid to the next larger grid (e.g., from 120m to 240 m), the values of the 

area variables, BGFA and WATER, are summed up over all the smaller cells included in a given 

cell of the larger grid. Therefore, their mean values are necessarily in the ratio 4:1 for a given 

grid and the next smaller one. The same is true for the variables TNDVI and TSVF because of 

the additive way in which they are computed. In contrast, the variables LST and ASR, which are 

averaged out over any grid, have necessarily the same mean values for the three grids, but their 

ranges increase when shifting from larger to smaller cells.  
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Table 1: Descriptive Statistics for All Variables and Grids 

Grid Variable Mean Minimum Maximum Coefficient 
of Variation Unit 

480m 

LST 30.89 25.20 34.49 0.06 ˚C 
BGFA 36,489.71 699.56 104,086.24 0.06 m2 
ASR 5,426 3,407 5,749 0.06 Wh/m2 
TSVF 56.5 36.8 63.8 0.09 N/A 
TNDVI 49.5 -5.4 138.4 0.51 N/A 
WATER 7,463.74 0.00 101,182.74 0.26 m2 

240m 

LST 30.89 22.90 37.71 0.07 ˚C 
BGFA 9,122.43 0.00 44,780.19 0.06 m2 
ASR 5,425 2,954 5,752 0.07 Wh/m2 
TSVF 14.1 8.5 16.0 0.10 N/A 
TNDVI 12.4 -8.0 42.1 0.62 N/A 
WATER 1,865.96 0.00 55,354.05 0.35 m2 

120m 

LST 30.89 21.22 39.17 0.08 ˚C 
BGFA 2,280.58 0.00 13,339.39 0.08 m2 
ASR 5,425 2,221 5,753 0.08 Wh/m2 
TSVF 3.5 1.3 4.0 0.13 N/A 
TNDVI 3.1 -3.3 11.7 0.76 N/A 
WATER 466.47 0.00 14,399.97 0.42 m2 

*LST=averaged land surface temperatures; BGFA=building ground footprint area;  
ASR=Averaged solar radiation; TSVF=total sky view factor; TNDVI=total  
normalized difference vegetation index; WATER=water area. 
 

 

4. STATISTICAL MODELING OF THE UHI 
 4.1. Model Estimation 

Regression analysis is used to explore the relationship between LST and the urban 

characteristics discussed in Section 3 over each grid structure, and to determine the estimation 

method that best represents the UHI, including the Ordinary Least Squares (OLS) Model, the 

Spatial Lag (Autoregressive) Model (SAR), and the General Spatial Model (GSM), a 

combination of the SAR and SEM (Spatial Error Model) models.  The temperature observed at a 

given location (cell) is likely to be spatially correlated with the temperatures observed at adjacent 

or close-by locations, due to atmospheric flows and exchanges. These spatial dependencies can 

be accounted for by estimating SAR and GSM models (LeSage and Pace, 2009).  



The first step is to estimate an OLS model, and to use the Moran I test to assess whether 

spatial autocorrelation (SA) exists in the residuals (error terms).  The logarithm of the dependent 

variable, ln(LST), is used, because it reduces the heteroscedastic effect of wide-ranging 

dependent variables.  The selected model specification is:  

 ln(𝐿𝑆𝑇) = 𝑎଴ + 𝑎ଵ𝐵𝐺𝐹𝐴 + 𝑎ଶ𝐴𝑆𝑅 + 𝑎ଷ𝑇𝑆𝑉𝐹 + 𝑎ସ𝑇𝑁𝐷𝑉𝐼 + 𝑎ହ𝑊𝐴𝑇𝐸𝑅 + 𝜀, 
ε~N(0, σଶI) 

(11) 

All the coefficients are significant at the 99% level and have signs consistent with the 

results of earlier research.  Summary results for the three grids are presented in Table 2: 

R2=0.835 for the 480m grid, 0.779 for the 240m grid, and 0.647 for the 120m grid.  The decline 

in the explanatory power of the OLS model is due to (1) the wider range of variations in the 

dependent variable LST over smaller cells, (2) the larger sample size for smaller cells grids 

(N=2,288 for 120m, 572 for 240m, and 143 for 480m), and (3) the closer proximity of smaller 

cells, which are likely to be more sensitive to the influence of neighboring cells (the spatial 

autocorrelation effect) than larger cells.  The OLS model cannot capture this effect, hence the 

lower explanatory power.  This is indeed confirmed by the Moran I values (Table 2), which are 

statistically significant, implying that the OLS error terms are spatially autocorrelated.  In order 

to reduce this SA, spatial lag models (SAR) are next estimated to capture the effects of LST in 

neighboring grid cells, with:   

 ln(𝐿𝑆𝑇) = 𝑎଴ + 𝜌𝑊ln(𝐿𝑆𝑇) + 𝑎ଵ𝐵𝐺𝐹𝐴 + 𝑎ଶ𝐴𝑆𝑅 + 𝑎ଷ𝑇𝑆𝑉𝐹 +
                      𝑎ସ𝑇𝑁𝐷𝑉𝐼 + 𝑎ହ𝑊𝐴𝑇𝐸𝑅 + 𝜀,  

ε~N(0, σଶI) 

(12) 

Table 2 presents summary results for the SAR model. The first-order contiguity (queen) matrix 

W has the highest log-likelihood value in all three grids, and is retained for further analyses.  See 

Appendix B for details about the construction of this matrix.  The coefficients of the independent 

variables have the same signs as in the OLS models and are all significant at the 1% level. 

Positive spatial lag coefficient (ρ) estimates imply that higher temperatures in adjacent cells 

increase the central cell’s temperature. It is notable that ρ increases from 0.21 to 0.78 when 

shifting from the 480m grid to the 120m grid, implying that the smaller the distance between 

adjacent cells, the stronger their mutual influences.  This result is reasonable.  However, the 

Lagrange Multiplier (LM) test of SA yields statistically significant LM values, implying that 

there is still SA among the residuals.  



Table 2. OLS and SAR Model Summary 
 Grid Size 480m (N=143) 240m (N=572) 120m (N=2,288) 

OLS 
R2 .835 .779 .647 
Moran-I 0.240*** 0.275*** 0.438*** 

SAR 
ρ 0.21*** 0.40*** 0.78*** 
Log-likelihood 389.41 1,392.62 5,498.32 
LM-test 42.19*** 491.57*** 27,899.33*** 

N=sample size; ρ=spatial lag term; LM=Lagrange Multiplier test 
***: statistically significant at the 1 % level 
 

 The next and final step is then to estimate a general spatial model (GSM) with the first 
contiguity matrix: 
 
 ln(𝐿𝑆𝑇) = 𝑎଴ + 𝜌𝑊ln(𝐿𝑆𝑇) + 𝑎ଵ𝐵𝐺𝐹𝐴 + 𝑎ଶ𝐴𝑆𝑅 + 𝑎ଷ𝑇𝑆𝑉𝐹 +

                      𝑎ସ𝑇𝑁𝐷𝑉𝐼 + 𝑎ହ𝑊𝐴𝑇𝐸𝑅 + 𝑢,  
𝑢 = λWu + ε, ε~N(0, σଶI) 

(13) 

 

The estimation results for the 480m, 240m, and 120m grids are presented in Table 3. The 

coefficients ρ and λ are statistically significant at the 1% level, and positive. As the grid becomes 

smaller, both ρ and λ become larger. The fits of the GSM models are better than those of the 

SAR models, as indicated by higher log-likelihood and R2 values. It is also notable that the three 

R2 values are similar, with a slight edge for the 120m grid (0.88). This suggests that smaller grid 

cells provide the basis for better UHI models. The GSM coefficient estimates are similar to those 

in the SAR models. The spatial lag coefficients ρ, while declining from the larger to the smaller 

grids, are smaller than those in the SAR models. The neighboring LST values have therefore less 

effects in the GSM model, as compared to the SAR model.  This can be explained by the GSM 

spatial autocorrelation effects captured, in part, by the unobserved variables included in the error 

term (coefficient λ). The effects of the independent variables are further explored in the 

following section.  

 

 

 

 

 

 



Table 3: GSM Model Results- First Contiguity Matrix 

Variable 

GRID 

480m 240m 120m 

Coefficient t-value Coefficient t-value Coefficient t-value 
BGFA 8.26E-08*** 4.91 3.18E-07*** 27.76 4.22E-07*** 21.65 
ASR 6.22E-05*** 5.21 4.50E-05*** 12.25 1.47E-05*** 19.46 
TSVF -0.0035*** -4.02 -0.0073*** -4.98 -0.0082*** -4.86 
TNDVI -0.0011*** -10.30 -0.0036*** -17.78 -0.0078*** -23.80 
WATER -1.42E-07*** -13.58 -4.79E-07*** -49.17 -1.03E-06*** -37.34 
Constant 3.034*** 150.29 2.361*** 20.46 1.1166*** 273.65 
ρ 0.085***  0.28***  0.67***  
λ 0.482***  0.420***  0.490***  
Log-
likelihood 

396.54  1410.64  5,578.48  

R2 .868  .842  .878  
 ***P<0.01 

 
4.2. Impact Analysis 

Assessing the impacts of the independent variables in a spatial regression model is more 

complex than in the case of an OLS model, where the partial derivative of the dependent variable 

with regard to an independent variable can be used directly. Because of the spatial 

autocorrelation of the dependent variable, it is necessary to consider the effects of the 

independent variables in the neighboring cells. As proposed by Lesage and Pace (2009), the 

direct, indirect, and total impacts of any independent variable are computed using the matrix (I-

ρW)-1. The direct impact is related to the impact of variables within the cell itself. The indirect 

impact represents the effects of the variables in neighboring cells, as defined by the contiguity 

matrix W. Finally, the total impact is the sum of the direct and indirect impacts. These impacts 

vary from cell to cell.  The formulas are adjusted to compute elasticities instead of derivatives. 

Table 4 presents the mean values of these impacts. Indirect impacts are always smaller 

than direct impacts for the 480m and 240m grids. However, the difference between these impacts 

in the 120m grid is much smaller, supporting the hypothesis that neighborhood impacts increase 

with smaller cells.   

 

 

 



Table 4: Mean Values for the Direct, Indirect, and Total Impacts 

Grid 480m 240m 120m 
Var. Direct Indirect Total Direct Indirect Total Direct Indirect Total 
BGFA 0.034 0.029 0.063 0.032 0.022 0.054 0.011 0.01 0.021 
ASR 0.353 0.299 0.652 0.252 0.169 0.421 0.083 0.073 0.156 
TSVF -0.207 -0.175 -0.312 -0.106 -0.072 -0.177 -0.03 -0.027 -0.057 
TNDVI -0.057 -0.048 -0.105 -0.046 0.031 -0.077 -0.025 -0.022 -0.048 
WATER -0.012 -0.01 -0.022 -0.01 -0.007 -0.017 -0.005 -0.005 -0.01 

 

First, the building ground footprint area (BGFA) has positive direct and indirect impacts 

in all cells, indicating that increasing building roof-top areas always lead to increased LST.  

Impervious materials on the roofs of buildings absorb thermal energy from incoming solar 

radiations without any buffer.  On average, a 1% increase in BGFA leads to a temperature 

increase of 0.06% for the 480m grid, 0.05% for the 240m grid, and 0.02% for the 120m grid.  On 

average, the direct impact represents about 75% of the total impact in the 480m and 240m grids.  

However, in the 120m grid, direct impacts are strictly positive in about 40% of the cells, because 

zero impacts characterize cells where there are no buildings. 

Second, solar radiations (ASR) have uniformly positive direct and indirect impacts, 

enhancing the UHI. While incoming shortwave solar radiations vary with solar altitude and 

atmosphere conditions, they lead to increased LST during daytime.  The ASR impact is larger 

than the impacts of all the other variables: 0.65%, 0.42%, and 0.16% for the 480m, 240m, and 

120m grids, respectively. 

Third, TSVF, representing urban canyon effects, always exerts negative direct and 

indirect impacts on LST. The negative effect of TSVF is related to the fact that a more visible 

open sky enhances air circulation in densely-built environments. Urban canyons surface 

temperatures are higher than in open areas, pointing to heat trapping as an overriding effect. The 

results suggest that the SVF on both the ground and building roofs plays a role in mitigating the 

UHI.  The impact of TSVF is second only to ASR: a 1% increase in TSVF leads to LST 

decreases of 0.31%, 0.18%, and 0.06% for the 480m, 240m, and 120m grids, respectively. 

Fourth, an increase in TNDVI, representing vegetation and biomass, leads to decreased 

LST. The average impact of TNDVI decreases, in absolute terms, from 0.10% to 0.08% to 

0.05% when shifting from the 480m grid to the 240m grid to the 120m grid.   



Finally, WATER impacts are always negative or nil. The zero impacts are simply due to 

the fact that the rivers flowing through the study area cover a limited number of cells. The 

presence of a water body helps in mitigating high daytime surface temperatures in Summer.  

 

5.  SIMULATION OF GREENING SCENARIOS 
What are the impacts of alternative greening actions on surface temperatures?  To answer 

this question, the 120m GSM model presented in Table 3 is used in a simulation mode, 

computing the temperature of each cell under a specific greening scenario. Before describing the 

proposed scenarios, the basic computational steps of the simulation are first presented.  

Assuming that the error terms u and ε are equal to 0, Eq. (13) can be rewritten in matrix form as: 

 

ln(LST) = [I-ρW]-1 a0  + [I-ρW]-1 a1BGFA  + [I-ρW]-1 a2ASR  +  [I-ρW]-1 a3TSVF + [I-ρW]-1    

                  a4TNDVI  + [I-ρW]-1 a5WATER                                                              (14)    

 

W is a matrix NxN, with N=2,288.  So, of course, is [I-ρW] and its inverse, which must be 

computed first.  The term a0 is a column vector of dimension N, where all the elements are equal 

to the intercept; the terms a1BGFA, a2ASR, a3TSVF, a4TNDVI, and a5WATER are also all 

column vectors of dimension N.  Hence, each product with the matrix [I-ρW]-1   is a column 

vector of dimension N, and the sum on the right side of Eq. (14) is a vector of dimension N, 

equal to the vector ln(LST).  Applying the exponential transformation to both sides of Eq, (14) 

leads to the generalized relationship: 

 

LST = F(BGFA, ASR, TSVF, TNDVI, WATER)      (15) 

 

Let the subscript  “o” represent before-greening actions, and the subscript  “a” after-greening 

actions.  The change in temperature ∆LST is then: 

 

∆LST = F(BGFA
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 Three scenarios are considered.  Scenarios 1 and 2 involve greening roofs, parking 

spaces, and vacant lots in a sub-area of the study area, as illustrated in Figure 4.  Figure 4.a 



presents the general location of the sub-area, while Figure 4.b provides the detailed locations of 

the greening actions.  The roofs were selected based on a detailed analysis of their sizes.  Note 

that there were no green roofs at the time of this analysis (2007).  However, a few green roofs 

have been actually constructed since 2007 in the Columbus metropolitan area, including the 

Lazarus building (former department store), the Franklin County Courthouse, and the Columbus 

Commons underground parking garage, all within the study area.  These changes have not been 

incorporated in the simulation, which reflects the situation in 2007.  The total area of greened 

roofs is 82,030 m2, and the total area of greened parking and vacant lots is 457,970 m2.   

  

 
1. Parking spaces near Nationwide Arena; 2. Parking space near COSI; 3. Parking spaces near S. Front St.; 4. Small parking 
space in the downtown; 5. Vacant lot; 6. Greater Columbus Convention Center roof; 7. City Hall roof; 8. City Center roof; 9. 
Greyhound building roof; 10. Small building roofs 

 
Figure 4: Simulated Greening Actions in the Center of Columbus  

 
 
 Scenarios 1 and 2 are characterized by NDVI values of 0.6 and 0.8 for the selected 

greened roofs and parking/vacant lots, respectively.  The grid-based data are modified as follows 

to reflect the greening actions.  The ground areas of greened parking/vacant lots have their NDVI 

changed to 0.6 or 0.8, and these areas are then apportioned over the relevant 120m cells.  In the 

case of greened roofs, their prior-to-greening BGFA values are deleted from the database, and 

their new NDVI values are apportioned over the relevant cells.  Scenario 3 combines Scenario 2 
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with an increase by 25% of the NDVI of all the areas (except those included in Scenario 2) with 

NDVI ≥ 0.4.  NDVI statistics for all cells in the study area and for those with NDVI ≥ 0.4 are 

presented in Table 5.  Cells with NDVI ≥ 0.4 have an average NDVI of 0.51, and a maximum 

NDVI of 0.79.  When all cells are considered, the NDVI varies between -0.86 and 0.59, with a 

mean of 0.19.  The NDVI pattern for the selected cells is also presented in Figure 5.c. 

 

Table 5:  NDVI Descriptive Statistics 

Coverage Average Standard 
Deviation Minimum Maximum 25% Median 75% 

All cells 0.19 0.19 -0.86 0.79 0.03 0.18 0.33 
Cells with NDVI ≥ 0.4 0.51 0.09 0.40 0.79 0.44 0.48 0.56 

  

 
 Scenario 1: NDVI=0.6 for greened roofs and parking/vacant lots 
 Scenario 2: NDVI=0.8 for greened roofs and parking/vacant lots 
 Scenario 3: Scenario 2 + increasing by 25% all cells with NDVI ≥ 0.4 
                 

Figure 5:  UHI Mitigation Scenarios and Temperature Changes ∆LST (oC) 

a. Scenario 1 b. Scenario 2 

c. NDVI Pattern for NDVI ≥ 0.4 d. Scenario 3 

∆LST 



 The resulting temperature change ∆LST for Scenarios 1, 2, and 3, are illustrated in 

Figures 5.a, 5.b, and 5.d, respectively.  While the largest temperature changes are centered on the 

greened roofs and parking/vacant lots, it is clear that these effects spread out beyond these roofs 

and lots, due to the spatial autocorrelation effects.  This spread expands from Scenario 1 to 

Scenario 3, as expected.  In the cases of Scenarios 1 and 2, ∆LST spreads beyond the sub-area 

with green borders on Figures 5.a and 5.b, but at a low level (by a quarter of a Celsius degree at 

most).  However, in the case of Scenario 3, the increased NDVI for all cells on Figure 5.c leads 

to more widespread ∆LST.  Within the green-boundary sub-area, some cells are characterized by 

∆LST in the range of 7-8 oC, and clusters with ∆LST in the range 0.75-1.5 oC appear in the 

southern and western parts of the study area.  Table 6 provides further evidence of these patterns 

of temperature changes.  Temperature decreases greater than or equal to 3oC characterize 11 cells 

under Scenario 1, 27 cells under Scenario 2, and 39 cells under Scenario 3.  Temperature 

decreases in the range 1-3 oC characterize 93 cells under Scenario 1, 105 cells under scenario 2, 

and 170 cells under Scenario 3.  These temperature changes can become inputs to further impact 

analyses, as discussed in Section 6. 

 
 
Table 6:  Number of Cells by Temperature Change Interval 

Temperature Change 
Intervals Scenario 1 Scenario 2 Scenario 3 

[-8 - -7] 0 0 4 
[-7 - -6] 0 3 4 
[-6 - -5] 3 5 1 
[-5 - -4] 4 1 15 
[-4 - -3] 4 18 15 
[-3 - -2.5] 11 8 21 
[-2.5 - -2] 11 25 23 
[-2 - -1.5] 29 31 31 
[-1.5 - -1] 42 41 95 
[-1 - -0.75] 27 34 91 
[-0.75 - -0.5] 56 53 170 
[-0.5 - -0.25] 71 73 581 
[-0.25 – 0] 1241 1238 1237 
[0] 789 758 0 
Total 2288 2288 2288 

 



6.  DISCUSSION 
 Several issues related to the proposed methodology and its simulation implementation are 

first discussed, including the relationship between surface and air temperatures, the role of water, 

the measurement of vegetation, and the assessment of UHI-mitigating strategies.  Extensions of 

the research approach are next outlined. 

What is the relationship between satellite-derived surface temperature and air 

temperature, which most directly affect people?  Based on their review of the available literature, 

Voogt and Oke (2003) conclude that the relationship depends upon the horizontal transport of 

heat by wind (advection), which depends upon the morphology of the urban surface.  In urban 

canyons, insolation shading may reduce the total energy input, but long-wave energy exchanges 

between buildings, even when in shade, may maintain high surface and air temperatures, 

depending upon the sky view.  Such effects should be captured, at least partially, by the GSM 

because it incorporates the TSVF variable.  At the micro-scale, the correlation between the two 

temperatures can be explained by atmospheric mixing, mean wind velocity, and the thermal 

properties of surface materials.  At larger scales typical of satellite sensors, the correlation is 

poorer, with substantial noise.  However, at night the correlation is much improved, particularly 

over vegetated surfaces with reduced micro-scale advection.  More recent research suggests a 

stronger correlation between the two temperatures.  For instance, Nichol et al. (2006), using 545 

temperature data pairs in Hong-Kong over a variety of surface materials, at the surface and at 1m 

above it, obtain a correlation coefficient of 0.97 for hourly averages.  Kloog et al. (2012), using 

2003 data for Massachusetts, obtain R2=0.85 between the two temperatures.  They further 

improve the fit to R2=0.95 by regressing the air temperature over the surface temperature and 

other variables, such as wind speed, elevation, NDVI, and impervious surfaces.  Thus, provided 

that the necessary air temperature data are made available, such a relationship could be estimated 

in the case of Columbus center, and could be coupled with the surface temperature GSM model 

to compute the air temperature changes resulting from a UHI-mitigating action.  

The water of the two rivers flowing through Columbus downtown has a significant 

temperature reduction effect.  However, it is not clear that the same effect would be obtained 

with non-flowing water basins that could be purposefully constructed to reduce the UHI.  

Further, this effect is most likely to be reversed in Winter, when the water may have a warming 

effect. 



While the NDVI is the most common measure of vegetation in UHI studies, and has 

turned out to be a significant variable in the GSM model, alternative measures could be 

considered.  For instance, Nichol et al. (2006) have proposed vegetation density (VD) to measure 

vegetation amount in all vertical layers above ground.  VD is considered to better represent the 

total biomass.  Vegetation height and density are likely to better account for shading effects. 

Another measure is the vegetation cover (VC), representing the percentage of ground covered by 

vegetation.  Carlson and Ripley (1997) propose the Leaf Area Index (LAI), while Jenerette et al. 

(2007) use a soil-adjusted vegetation index (SAVI).  Yuan and Bauer (2007) show that using the 

percentage of impervious surface area (ISA) yields better results than the NDVI.  Other indices 

based on different satellite bands have been proposed by Chen et al. (2006), including the 

Normalized Difference Water Index (NDWI), Built-up Index (NDBI), and Bareness Index 

(NDBaI).  All these variables could be tested, and might improve model estimation.  Finally, 

surface albedo, which represents reflectance of short-wave radiation, is known to affect the UHI, 

and should be incorporated into statistical models when such data are available. 

The simulations presented in Section 5 provide a clear measure of the impacts of 

greening strategies.  However, temperature decreases must be further analyzed in order to reach a 

comprehensive cost-benefit analysis of these strategies.  In particular, the resulting decline in the 

need for air-conditioning must be assessed, together with the subsequent decreases in electricity 

consumption/production and in air pollution and greenhouse-gas emissions by power plants.  

Also, reduced temperatures help reduce the production of tropospheric ozone.  These pollution 

reductions must then be translated into health benefits (reduced morbidity and mortality). 

Further, green roofs help reduce the heat influx into buildings, further decreasing cooling needs, 

and also retain rainwater, reducing peak surface runoff, nonpoint water pollution, and the need 

for stormwater facilities.  These impacts are discussed in Tsang and Jim (2011) in the case of 

green roofs in Hong-Kong.  More generally, ground-level greening would also provide these 

water-related benefits, but its cost must be assessed in terms of the benefits that other land uses 

would have provided to residents, businesses, and city government (foregone tax revenues).  

Greening parking lots, an unfortunate but ubiquitous occurrence in most American cities, might 

require building underground parking, at a high cost, and/or a shift to public transportation, 

which would enhance smart growth. 



The spatial statistical model could also be used to assess other, non-greening, UHI 

mitigating strategies, such as installing water basins in central city areas, or expanding the beds 

of existing rivers.  Interestingly, this is currently happening to the Olentangy River in Columbus, 

after removal of several dams.  Other strategies could involve setting restriction on distances 

between buildings and on their heights, to increase the SVF and enhance air circulation.  

However, the resulting decrease in shading and increase in solar radiations over impervious 

surfaces might have opposite effects, which could all be assessed by the model. 

There are several lines of research that could extend the methodology presented in this 

paper.  First, the comparison of the three grids results suggests that the best model is obtained 

with the smaller 120m cells (Table 3).  While all the data may be captured over smaller cells 

(e.g., 60m or 30m), the available software is not currently able to estimate spatial models over 

such grids, because of the necessary size of the W matrix.  In the 120m case, there are 2,288 

cells, and therefore the W matrix has dimensions 2,288x2,288 and 5.235 Million entries.  In the 

60m and 30m  cases, W would have close to 21 and 84 Million entries, respectively.  Inverting 

such matrices is not yet routinely possible, but might be so in the near future.  Second, surface 

temperatures, solar radiation, and NDVI vary over the year. The UHI spatial statistical model 

could be estimated for different periods/seasons, accounting for such changes.  A multi-period 

model could be used to design strategies that balance contradictory UHI effects, namely that 

temperatures should be reduced in the hot season to reduce cooling needs, but increased in the 

cold season to reduce heating needs.  Nevertheless, one should bear in mind the limitation in 

using satellite images associated with their acquisition time. Since satellite orbital periods are 

constant, Landsat TM always passes over the State of Ohio with a 16-day repeat cycle at 

10:00am. This makes it impossible to capture surface temperatures at other times, such as early 

morning, late afternoon, or nighttime.  Finally, the methodology could be tested over different 

cities/locales with different topography, climate, morphology, and land-use structure, to assess 

the generality of the results obtained for the city of Columbus. 

  

7. CONCLUSIONS 
The objectives of this research were to specify and estimate improved statistical 

regression models of the UHI, determine the best scale of capture of the necessary data, and  



illustrate the use of the model(s) for designing UHI-mitigating strategies.  These objectives have 

been, by and large, achieved. 

Satellite data have been used to estimate surface temperatures and vegetation coverage,  

GIS data to delineate building boundaries and land uses, and LiDAR data to closely 

approximating the real urban infrastructure and environment in 3-D space. The resulting 3-D city 

model has allowed for the computation of a comprehensive set of 3-D urban characteristics.  The 

integration of these various datasets represents an advance over past research, which has 

generally focused on a smaller subset of urban characteristics. 

A multi-step statistical analysis, involving regression models of increasing complexity, 

has been implemented, culminating in the selection of the General Spatial Model (GSM), which 

accounts for spatial autocorrelation in both the dependent variable (LST) and the error term.  

This result confirms that spatial interactions between cells within a specified neighborhood 

characterize the UHI.  Biased results would be obtained by not accounting for these effects, and 

this problem is likely to characterize much of the earlier UHI statistical research.  In addition, the 

GSM is able to account for the simultaneous effects of five urban characteristics captured over 

regular grids: building roof-top areas (BGFA), TNDVI, solar radiations (ASR), sky view factor 

(TSVF), and water.  The impacts of these variables is consistent with past research: increasing 

BGFA and ASR lead to increased surface temperatures (LST), while increasing TNDVI, TSVF, 

and Water lead to decreasing LST.  Finally, the best GSM results are obtained with the 120m 

grid, which suggests that using smaller cells better captures inter-cell effects.  Unfortunately, 

software limitations do not currently allow for testing the GSM over smaller cells (e.g, 60m or 

30m). 

A regression model, specified within a generalized theoretical framework, lets the data 

speak, but cannot represent the detailed physical processes of the UHI.  For instance, open paved 

areas subject to all-day insolation receive more heat input, as measured by the ASR variable, but 

this heat would be more likely to be lost through convection, as compared to an urban canyon.  

Such loss is captured by the TSVF variable.  In contrast, while urban canyons may be subject to 

less solar heat input due to mutual shading effects, heat trapping may be an overriding effect, as 

measured by TSVF.  Conceivably, the GSM could be used to analyze hypothetical urban layouts 

involving clearly delineated open paved areas and urban canyons, and assess which type of area 

contributes more to the UHI.  However, there are counteracting factors that are not accounted for 



by the model and may modify the above processes: for instance, urban canyons can accelerate air 

flows through the Venturi effect, depending on wind velocity.  Another issue is the heating 

contribution of roof tops, as compared to ground-level paved areas, because a building several 

stories high could be better ventilated.  However, this ventilation might depend upon the SVF of 

the roof top, which is a component of the TSVF index used in the GSM.  To clarify this effect, 

further research might use the RSVF and GSVF factors separately. Finally, the model could be 

improved by accounting for the albedo of roof-top and ground-level areas, when such data 

become routinely available. 
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Appendix A – Variables and Acronyms 

∆LST:  Land Surface Temperature Change 
2-D:  Two-Dimensional 
3-D:  Three-Dimensional 
AGSVF: Average Ground-Level Sky View Factor 
ARSVF: Average Roof-Level Sky View Factor 
ASR:  Average Solar Radiation 
BGFA:  Building Ground Floor Area 
CBD:  Central Business District 
DN:  Digital Number 
DTM:  Digital Terrain Model 
GIS:  Geographic Information System 
GSM:  General Spatial Model 
GSVF:  Ground Sky View Factor 
Landsat TM: Landsat Thematic Mapper 
LiDAR: Light Detection and Ranging 
LM:  Lagrange Multiplier 
LST:  Land Surface Temperature 
NDVI:  Normalized Difference Vegetation Index 
NIR:  Near Infra-Red 
OLS:  Ordinary Least Squares 
RSVF:  Roof Sky View Factor 
SA:  Spatial Autocorrelation 
SAR:  Spatial Autoregressive (Lag) Model 
SEM:  Spatial Error Model 
SR:                  Solar Radiation 



SVF:  Sky View Factor 
TNDVI: Total Normalized Difference Vegetation Index 
TSR:  Total Solar Radiation 
TSVF:  Total Sky View Factor 
UHI:   Urban Heat Island 
W:  Neighborhood Structure Matrix 
 

Appendix B – Neighborhood Structure Matrix W 

 

The matrix W reflects the concept of binary contiguity between spatial units.  Consider the 

hypothetical grid made of 16 cells, as presented in Figure B.1.a.  Assume that two cells are 

neighbors of each other if they have a common edge or vertex.  Consider cell 1.  Its neighbors 

are then cells 2, 5, and 6.  These connections are reflected in the first line of the 16x16 matrix in 

Figure B.1.b., where a 1 appears in columns 2, 5, and 6, while all the other entries are set to 0.  

Likewise, the neighbors of cell 10 are cells 5, 6, 7, 9, 11, 13, 14, and 15, and the 1’s in line 10 of 

the matrix reflect these relationships.  Generally, the matrix in Figure B.1.b is converted to the 

standardized weight matrix in Figure B.1.c by dividing the elements in each line by their sum.  In 

the case of line 1, the sum in Figure B.1.b is 3, hence the weights 0.333 in Figure B.1.c.  Let X 

be the vector of a variable x taking values over the 16 cells.  The product WX, a column vector 

of dimension16, then represents the average values of x over the neighbors of each of the 16 

cells.  The above contiguity is called queen contiguity.  Rook contiguity characterizes 

connections through edges only, while bishop contiguity only involves vertex connections only.  

First-order contiguity involves only directly contiguous cells, while second-order contiguity 

involves, in addition, the cells contiguous to the first-order cells.  Higher-order contiguity is 

defined similarly.  There are, of course, other ways to define the matrix W.  The maximum-

distance approach involves all the cells whose centroids are within a given distance from the 

centroid of the cell considered.  Also, the weights may be modified to reflect the declining effect 

of distance, as in the gravity model.  For further insights into spatial econometrics methods, see, 

for instance, Anselin (1988). 

 
 
 
 
 
 



 
 
 
 
 
 
 

 
 Figure B.1:  Spatial Neighborhood Matrix  

  

a. Sample grid b. First-order queen’s contiguity relations 

c. Standardized weight matrix 
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