
 

Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel
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We realize a heat engine using a single-electron spin as a working medium. The spin pertains to the
valence electron of a trapped 40Caþ ion, and heat reservoirs are emulated by controlling the spin
polarization via optical pumping. The engine is coupled to the ion’s harmonic-oscillator degree of freedom
via spin-dependent optical forces. The oscillator stores the work produced by the heat engine and, therefore,
acts as a flywheel. We characterize the state of the flywheel by reconstructing the HusimiQ function of the
oscillator after different engine run times. This allows us to infer both the deposited energy and the
corresponding fluctuations throughout the onset of operation, starting in the oscillator ground state. In order
to understand the energetics of the flywheel, we determine its ergotropy, i.e., the maximum amount of work
which can be further extracted from it. Our results demonstrate how the intrinsic fluctuations of a
microscopic heat engine fundamentally limit performance.
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Heat engines converting thermal energy to mechanical
work have always been the centerpiece of thermodynamics.
They consist of four fundamental components: a working
agent, the cold and hot heat reservoirs, and a mechanism for
deposition or extraction of the generated work. Recently,
thermal machines have been experimentally demonstrated
in the microscopic regime [1–3] and are currently entering
the realm of well-controlled atomic systems: A single-ion
heat engine [4] and an ion-crystal based refrigerator [5]
have been demonstrated recently, and engines based on
ensembles of nitrogen-vacancy centers in diamond [6],
superconducting circuits [7], or ensembles of nuclear spins
in a NMR setup [8] have been studied. With the decreasing
size of the constituent parts and at finite operation time-
scales, well-established notions such as work, heat, and
efficiency need to be reassessed [9–11]. In particular, far
from the thermodynamic limit, fluctuations play a central
role [12–14]. For engines comprising a few microscopic
degrees of freedom, the impact of quantum effects has been
subject to theoretical studies [15–19].
Here, we report on the experimental realization of a heat

engine based on a two-level system as a working agent,
which is coupled to a harmonic-oscillator degree of free-
dom [20], where output energy is deposited throughout the
operation of the engine. The harmonic oscillator stores the
work generated by the engine and, thus, is henceforth
referred to as the flywheel [21]. The engine and flywheel
degrees of freedom both allow for direct control. This
enables the characterization of the energy deposition
throughout the onset of the engine operation, at an energy
resolution below the single quantum level. Starting with the
flywheel initialized in the ground state, we characterize its

state after different engine operation times by reconstruct-
ing its Husimi Q function [22]. From this, we infer the
energy deposited in the flywheel along with its fluctuations.
The measured fluctuations have a significant thermal
component, indicating that not all of the energy transferred
to the flywheel is extractable work. Therefore, in order to
quantify the work done by the engine, we evaluate the
ergotropy [23–25], i.e., an upper bound on the amount of
work which can be extracted from the flywheel. The results
reveal how the generation of useful work is limited by
effects which are characteristic for microscopic systems.
Engine operation.—The heat engine operates on the spin

of the valence electron pertaining to a single trapped 40Caþ
ion. The operation is depicted in Fig. 1. Heating and
cooling of the spin are achieved by controlling its polari-
zation in an external magnetic field via alternating optical
pumping. The harmonic motion of the ion in the confining
Paul trap acts as the flywheel. We place the ion in an optical
standing wave (SW), which mediates the coupling between
the engine and flywheel via a spin-dependent optical dipole
force [26,27] along the oscillation (x) direction. The trap
center x ¼ 0 coincides with a node of the SW. The
Hamiltonian of the coupled spin-oscillator system reads

Ĥ ¼ ĤHO þ ℏ½ωz þ ΔS sinðkSWx̂Þ�
σ̂z
2
; ð1Þ

where ωz denotes the Zeeman splitting of the spin and σ̂z is
the Pauli z operator. The bare flywheel Hamiltonian is
ĤHO ¼ ℏωtðn̂þ 1

2
Þ, where ωt is the trap frequency along x

and n̂ is the number operator. The parameter ΔS denotes
the amplitude of the SW in terms of the spatially varying ac
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Stark shift, where kSW ≈ 2π=280 nm is the effective wave
number. The internal energy is given by the Zeeman energy
of the spin: U ¼ ℏω0

zðhx̂iÞhσ̂zi=2. For small displacements
kSWhx̂i ≪ 1, the effective Zeeman shift—the sum of the
magnetic field-induced shift and ac Stark shift from the
SW—is ω0

zðhx̂iÞ ¼ ωz þ ΔSkSWhx̂i.
Optical pumping with optical polarization alternating at

the trap period 2π=ωt emulates the coupling to reservoirs:
After each pumping step, the populations of the Zeeman
sublevels of the S1=2 electronic ground state correspond to a
fixed temperature; see Fig. 2(a). The cold reservoir temper-
ature TC corresponds to the predominant population of the
lower-energy Zeeman sublevel, i.e., hσ̂zi≳ −1, while the
hot reservoir temperature TH > TC corresponds to pre-
dominant depolarization, hσ̂zi≲ 0. The hot and cold
temperatures are determined via

hσ̂zi ¼ − tanhðℏω0
z=2kBTÞ: ð2Þ

Close to the SW node, the ion experiences a mean spin-
dependent force F ¼ −ℏkSWΔShσ̂zi=2. Since hσ̂zi varies
periodically at frequency ωt, this leads to an average
resonant driving force on the oscillator, i.e., deposition
of work in the flywheel. The engine is equivalent to a four-
stroke Otto motor: Associating the effective Zeeman shift
ω0
z with the inverse volume of a working gas in a macro-

scopic engine, we identify the four strokes of the cycle as
follows (see Fig. 1): The first optical pumping step realizes
isochoric heating of the spin (heat transferQð1Þ). For an ion
positioned at x > 0, the effective restoring force is
increased. In the second step, the harmonic oscillation
half-cycle leads to a decrease of ω0

z, i.e., isentropic
expansion (consumption of work Wð2Þ from the flywheel),
as the ion moves to x < 0. Isochoric cooling takes place in
the third step (heat transfer Qð3Þ). This step again increases

the effective restoring force. Then, the final oscillation half-
cycle leads to an increase of ω0

z, i.e., isentropic compression
(release of work Wð4Þ to the flywheel). As energy is
continuously stored in the flywheel, the amplitude of the
harmonic oscillation increases during the operation of the
engine. Since the internal Zeeman energy of the spin scales
with the oscillator displacement, the cycle is not closed, and
the power increases with the number of cycles.
Quantifying work.—Because of its coupling with the

baths, the spin’s orientation is intrinsically uncertain, giving
rise to a random spin-dependent force acting on the
flywheel. This leads to fluctuations in the energy trans-
ferred to the flywheel during the isentropic strokes. Even
for an ideal Otto cycle with fast, perfectly timed isochores
and disregarding other experimental imperfections, the
flywheel executes a random walk in phase space, whose
statistical properties are determined by the equilibrium spin
populations [28]. As a result, only a fraction of the
deposited energy constitutes useful, extractable work, while
the remainder increases the flywheel’s entropy.
In elementary thermodynamics, work is simply the

change in the energy of a load. Here, in contrast, we
study the flywheel’s capability to store work that could
subsequently be extracted into another system [21,34].
The flywheel’s work content is thus quantified by its
ergotropy, i.e., the maximum work that can be extracted
via a cyclic unitary transformation [23]. It is defined as

(a)

(b)

FIG. 1. Operation of the four-stroke engine. (a) Mechanical
picture: The parabolas show the harmonic trap potential, and lines
indicate the additional spin-dependent optical potential acting on
j↑i (red) and j↓i (blue). The arrows within the circles representing
the ion correspondingly indicate the spin populations. (b) Energy
representation: The levels indicate the Zeeman energies of j↑i and
j↓i, and the size of the circles indicates the populations. Shown are
the states of the system after each of the engine strokes, from left to
right: isochoric heating, isentropic expansion, isochoric cooling,
and isentropic compression (see the text).

(a)

(c)

(b)

FIG. 2. (a) Measured probabilities to find the spin in j↑i
throughout the engine operation. The colored areas indicate that
the pump laser is switched on (pink, heating; blue, cooling). The
equilibrium probabilities indicated by the horizontal dashed lines
indicate the optical pumping operations, emulating the equili-
bration with reservoirs at temperatures TC and TH. (b) Relevant
atomic levels of 40Caþ, showing the working-medium levels j↓i
and j↑i, the transition to the metastable D5=2 level utilized for
spin readout (red arrow), the stimulated Raman transition for
probing (purple arrows), and the cycling transition utilized for
optical pumping and readout (blue arrows). (c) Experimental
sequence for the reconstruction of the flywheel Q function (see
the text), indicating sideband cooling (SBC), optical pumping
(OP), rapid adiabatic passage (RAP), and spin readout (R).

PHYSICAL REVIEW LETTERS 123, 080602 (2019)

080602-2



W ¼ Tr½ĤHOρ̂� − Tr½ĤHOρ̂p�, where ρ̂ is the state of the
flywheel and ρ̂p is the passive state unitarily related to ρ̂
[28]. The ergotropy represents the amount of ordered
energy stored in the flywheel while disregarding random
contributions such as thermal fluctuations. Measuring the
work output, thus, requires us to characterize the state of
the flywheel resulting from engine operation.
Experimental realization.—We store a single 40Caþ ion

trapped in a miniaturized Paul trap [35], at a secular trap
frequency of ωt ≈ 2π × 1.4 MHz along the x axis. The
Zeeman sublevels of the S1=2 electronic ground state, i.e.,
the two-level system working agent of the engine, are
denoted by j↑i and j↓i [Fig. 2(b)]. A constant magnetic
field yields a Zeeman splitting between these of
ωz ≈ 2π × 13 MHz. The alternating optical pumping is
carried out via laser pulses driving the S1=2 ↔ P1=2 cycling
transition near 397 nm, at pulse durations shorter than half
the trap period π=ωt. For the hot (cold) isochore, the optical
polarization is dynamically set to left (right) circular by
means of an electro-optical modulator, which leads to
population transfer j↓i → j↑i (j↑i → j↓i). The intensities
and pulse durations determine the spin polarizations at the
end of the isochores and, therefore, the effective bath
temperatures. We work with equilibrium spin polarizations
of hσ̂ziðHÞ ¼ −0.084ð4Þ and hσ̂ziðCÞ ¼ −0.656ð6Þ, which
correspond to temperatures TH ¼ 3.5ð2Þ mK and TC ¼
0.40ð1Þ mK according to Eq. (2). The SW—providing the
coupling between spin and flywheel—is generated by two
laser beams far detuned from the cycling transition and
controlled via acousto-optical modulators. This gives rise to
a spin-dependent ac Stark shift, periodically varying along
x at an amplitude of ΔS ¼ 2π × 2.73ð2Þ MHz ≪ ωz.
The experimental sequence is depicted in Fig. 2(c). In

each experimental run, the flywheel is initialized in its
ground state via resolved sideband cooling [36], and the
spin is initialized to a statistical mixture state corresponding
to temperature TC via optical pumping. Then, the SW is
switched on and we run the heat engine for a time tHE,
during which the alternating pumping is carried out.
After heat engine operation throughout tHE, the SW is

switched off. Then, the spin is pumped to j↓i and its role is
changed—rather than driving the engine, it is now
employed as a probe for the final state of the flywheel
ρ̂. As the flywheel was initialized close to its ground state
and energies in the few-quanta regime are to be resolved, a
quantum-mechanical measurement scheme is ultimately
required. We reconstruct the Q function of the flywheel

Qðα; α�Þ ¼ 1

π
h0jD̂†ðαÞρ̂ D̂ðαÞj0i: ð3Þ

This quantity is the probability to find the flywheel in the
ground state after the application of a displacement kick
D̂ðαÞ and represents a quasiprobability distribution in phase
space. The state reconstruction measurement starts with a
displacement “kick” operation of complex amplitude α on

the flywheel. This operation is carried out by applying
calibrated voltage pulses to neighboring trap segments [37].
After the kick, the population of all states jn;↓i is trans-
ferred to jn − 1;↑i. This is possible only for n ≠ 0; there-
fore, only the population pertaining to n ¼ 0 remains in
j↓i. This is realized via rapid adiabatic passage (RAP) on
the first red sideband of the stimulated Raman transition
between j↑i and j↓i. Finally, spin readout via population
transfer j↑i → D5=2 to a metastable state [36] and sub-
sequent detection of state-dependent fluorescence upon
driving the cycling transition yields a “bright” result at a
probability corresponding to the Q function value Eq. (3).
A similar method has been used, e.g., in Refs. [14,22].
The Q function is reconstructed in polar phase space

coordinates by scanning jαj via the kick voltage amplitude
and arg α via the kick delay time with respect to the onset of
the heat engine operation. For increasing values of jαj, the
resolution of arg α is increased, such that the support
of Qðα;α�Þ in phase space is scanned at roughly constant
steps.
Results.—We reconstruct Qðα; α�Þ for different heat

engine run times tHE, in steps of tðiÞHE ¼ iΔtHE with
ΔtHE ¼ 3 μs, up to a duration of about 25 flywheel
oscillation periods. Examples of reconstructed Q functions
are shown in Fig. 3, revealing the nature of the final
flywheel states. The quasiprobability peaks around a fixed
amplitude and phase, indicating coherent oscillations.

FIG. 3. Measured Q functions (raw data) for the flywheel at
different times throughout the heat engine operation. Each pixel
shows the result of 1000 independent experimental runs and
corresponds to a kick voltage determining jαj and a kick delay
determining the phase arg α. The black lines are 1=e2 contours
pertaining to fits of the Q function to the model Eq. (4). jαj ¼ 1
corresponds to an oscillation amplitude of 19 nm. For further
evaluation, the raw data values are shifted and rescaled to account
for imperfect population transfer and readout, such that the
normalization

R
Qðα; α�Þd2α ¼ 1 is fulfilled and that Qðα; α�Þ

assumes zero for large values of jαj.
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Furthermore, the support of the distribution increases
asymmetrically beyond the uncertainty limit, indicating a
thermal component induced by spin fluctuations and
squeezing by the anharmonic SW potential. We therefore
model the resulting flywheel states as displaced squeezed
thermal states (DSTS):

ρ̂DSTðβ; ζ; n̄Þ ¼ D̂ðβÞŜðζÞρ̂thðn̄ÞŜ†ðζÞD̂†ðβÞ; ð4Þ

ρ̂thðn̄Þ ¼
X

n

n̄n

ðn̄þ 1Þnþ1
jnihnj; ð5Þ

with the thermal state ρ̂thðn̄Þ pertaining to the mean thermal
phonon number n̄, the squeezing operator ŜðζÞ, and the
displacement operator D̂ðβÞ. The squeezing excitation is
small as compared to thermal and displacement excitations.
For obtaining estimates of the parameters n̄, β, and ζ for
each reconstructed flywheel state, we fit the model Eq. (4)
to given Q function data. To that end, for each test
parameter set fβ; ζ; n̄g, a density matrix is computed in
a truncated number state basis from Eq. (4), from which the
Q function values at the probed phase space coordinates are
computed directly from Eq. (3). The fit minimizes the root-
mean-square difference between the measured and model
Q function values.
The DSTS model provides a description of the flywheel

energetics. The ergotropy W and mean energy E ¼
Tr½ĤHOρ̂DST� are given, respectively, by [28]

W ¼ ℏωtjβj2 þ ℏωtsinh2ðjζjÞð2n̄þ 1Þ; ð6Þ

E ¼ W þ ℏωtn̄: ð7Þ

The dominant contribution to the ergotropy derives from
the oscillatory motion represented by β, with a further
squeezing contribution. Conversely, thermal fluctuations
increase the mean energy by an amount ℏωtn̄, that cannot
be extracted as work. Note, however, that squeezing
catalyzes the extraction of work from thermal fluctuations
[25] via the term proportional to sinh2ðjζjÞn̄ in Eq. (6).
The energy and ergotropy deposited in the flywheel are

displayed in Fig. 4, together with the relative energy
fluctuations ΔE=E, where ΔE2 ¼ Tr½Ĥ2

HOρ̂DST� − E2.
The experimental results show qualitative agreement with
simulations of a Lindblad master equation describing the
Otto cycle. Importantly, our theoretical model incorporates
the full Hamiltonian (1), which is nonlinear in x̂. The
assumption that the ion remains close to the SW node, so
that kSWhx̂i ≪ 1, breaks down after about five engine
cycles. As a consequence, the engine transitions from its
initial onset behavior, with ergotropy increasing quadrati-
cally in time, to a later regime where the curvature of the
SW potential limits the growth of ergotropy to be approx-
imately linear. The squeezing contribution to the ergotropy
amounts to 1.9(3) quanta at tHE ¼ 18 μs. The discrepancy

between the theory and experiment can be attributed to
imperfections such as photon recoils during optical pump-
ing, phase jitters of the SW, and off-resonant scattering
from the SW, which are not included in the simulation. See
Supplemental Material for details of the theoretical model
and error analysis [28].
Our measurements show that the flywheel’s ergotropyW

remains strictly less than its energy E due to the presence of
thermal excitation. However, the fractionW=E grows over
time, indicating an increasingly ordered deposition of
energy in the flywheel. This is reflected in the behavior
of ΔE=E, which exhibits a crossover from an initial
transient increase dominated by thermal fluctuations to
asymptotic decay at longer times [28]. Note that even a pure
coherent state, which would arise from unitary transfer of
work to the flywheel, would still exhibit Poissonian energy
fluctuations. As shown in Fig. 4(b), the measured energy
fluctuations significantly exceed this “displacement limit.”
These results demonstrate that the extractable work

produced by microscopic engines is reduced by intrinsic
fluctuations. However, in order to distinguish useless
thermal energy from useful deposited work, one must go
beyond energy statistics to quantitatively describe the
thermodynamic performance of such engines—for which
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FIG. 4. Results: (a) measured energy E, ergotropy W, and
(b) relative energy fluctuations ΔE=E, compared to (cycle-
averaged) predictions of the master equation [28]. In (b), we
also plot the relative fluctuations of a coherent state with the
measured displacement β, i.e., ðΔE=EÞdispl ¼ jβj=ðjβj2 þ 1

2
Þ. In

the simulations, the flywheel starts in a thermal state with the
measured initial energy. Note that the relative fluctuation values
exhibit small error bars, as both statistical and systematic errors of
ΔE and E are correlated.
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ergotropy is the relevant quantity. As the energy transferred
to the load increases, the relative fluctuations decrease and
the extractable work becomes equivalent to the flywheel’s
energy, in accordance with the principles of macroscopic
thermodynamics.
Conclusion and outlook.—We have experimentally dem-

onstrated the operation of a single spin-1
2
heat engine

coupled to a harmonic-oscillator flywheel, and we have
characterized the finite-time thermodynamic performance
of the combined engine-flywheel system. Furthermore, we
have shown that Q-function measurements together with a
DSTS ansatz allow for an accurate assessment of the
energetic capability of our microscopic engine via the
ergotropy, i.e., the maximum amount of work which can
be extracted from the flywheel by a cyclic unitary protocol.
Our results reveal the importance of fluctuations in
machines operating on single atomic degrees of freedom.
We stress that, while our measurement method is

intrinsically quantum mechanical, and while we initialize
the flywheel in its ground state, the resulting states of the
flywheel are consistent with a semiclassical model. This is
a consequence of the operational principle implemented
here, which requires optical pumping, i.e., strong incoher-
ent coupling of the spin engine to reservoirs to accomplish
heat transfer.
Ultimately, one would seek to establish reservoirs con-

sisting of sets of trapped ions rather than external control
fields, which would open up a plethora of possibilities for
studying thermal machines comprised of well-controlled
microscopic quantum systems. Further extensions of the
spin heat engine could encompass limit-cycle operation by
adding persistent laser cooling of the flywheel and dem-
onstrating autonomous operation [38,39]. We also note that
irreversible entropy production can be inferred from Q
functions via the Wehrl entropy [40] and that our platform
may allow the investigation of links between ergotropy and
correlations [41]. Our experiment opens the door to further
explorations of nanoscale thermodynamics where a work
repository is explicitly included.
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