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Superfluidity, the ability of a fluid to move without dissipation, is one of the most spectacular

manifestations of the quantum nature of matter. We explore here the possibility of superfluid motion of

light. Controlling the speed of a light packet with respect to a defect, we demonstrate the presence of

superfluidity and, above a critical velocity, its breakdown through the onset of a dissipative phase. We

describe a possible experimental realization based on the transverse motion through an array of wave-

guides. These results open new perspectives in transport optimization.
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Next year will bring the opportunity to celebrate the
100th anniversary of the discovery of superconductivity
[1]. This remarkable property is often related to a more
fundamental phenomenon, the Bose-Einstein condensa-
tion, where a single quantum state is occupied by a macro-
scopic number of particles. The bosons that condense may
be coupled electrons that form Cooper pairs, as in super-
conducting metals [2], atoms [3], like in the original ex-
periments in superfluid (SF) 4He [4], or molecules [5].
They may also be formed of more complex particles, like
fermionic atom pairs [6], or polaritons, a composite of a
photon and an exciton [7]. Superfluidity of polaritons in
semiconductor cavities was explicitly tested recently [8].

There are different definitions of superfluidity, each one
may emphasize a particular physical aspect. Here super-
fluidity means the existence of a finite critical velocity
vc > 0 below which the motion of the fluid is dissipation-
less. A particularly simple way to experimentally imple-
ment this test is by moving through the fluid an obstacle, or
localized external potential. When the potential is weak, it
has been shown long ago [9] that vc ¼ cs, where cs is the
speed of sound in the fluid [10]. Above the critical velocity,
superfluidity is broken and dissipative effects appear.

It is important to note that a finite critical velocity is
directly related to the presence of interactions between the
bosons. The interactions control the long wavelength struc-
ture of the dispersion relation of the fluid. In a mean-field
approximation, weakly interacting bosons may be mod-
eled, with good accuracy, by the Gross-Pitaevsky equation.
The latter corresponds to a Schrödinger equation with an
additional nonlinear term that describes the interactions. In
particular, this equation reproduces correctly the
Bogoliubov dispersion relation mentioned above for the
excitations of the interacting fluid. Interestingly, when the
propagation of light is considered through a nonlinear
medium of the Kerr-type uniform in one direction, in the
paraxial approximation a similar equation is obtained for
the slowly varying envelope of the optical field of a given
wave number and frequency. The analogy between the
Gross-Pitaevsky equation and the light propagation in

nonlinear media has been exploited in the past to test basic
quantum effects with optics, like Bloch oscillations [11,12]
or Anderson localization [13]. Because of the similarities
of the two equations, and since the Gross-Pitaevsky equa-
tion predicts SF motion, it is natural to push further the
analogies and consider the possibility to observe a new
state of light, e.g., superfluidity in an optical nonlinear
medium. Based on a self-defocusing refractive medium
inside a Fabry-Pérot cavity, an optical analog of a SF has
indeed been proposed [14]. However, the results of the
numerical simulations based on a transient regime were
not conclusive. Moreover, no clear evidence of the exis-
tence of a SF critical velocity was provided. Therefore, the
existence of photonic superfluidity in nonlinear media, as
well as its experimental observation, remain open issues.
Our purpose here is (i) to provide clear evidence of SF

motion of light in a nonlinear medium as well as of its
breakdown and (ii) propose an experiment that allows the
observation of these effects. For simplicity, we will focus
on the propagation of light in an effective one-dimensional
array of waveguides.
In these materials, light propagates in a medium where

the refractive index has been spatially modulated. A typical
set up consists of a periodic modulation of a two-
dimensional layer, where an array of equally spaced iden-
tical waveguides is formed (see Fig. 1). Outside each of the
waveguides the optical field intensity decreases exponen-
tially. When the distance is such that the overlap between
the fields of neighboring waveguides is small, the optical
tunnelling between adjacent guides may simply be mod-
eled by a hopping term. Light propagates along the guides
in the longitudinal direction and hops from guide to guide
in the transverse direction. Moreover, the width of each
waveguide may be engineered in order to modify the
energy of the local (quasi) bound state light mode, and
Kerr materials may be used to include nonlinear effects.
Under these conditions, the optical field amplitude Ak of
light at the kth lattice site (or waveguide) obeys the follow-
ing discrete nonlinear Schrödinger equation [12] (in the
paraxial approximation):
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¼ �CðAkþ1 þ Ak�1Þ þ �jAkj2Ak þ �kAk (1)

whereC is the tunneling rate between two adjacent sites, �k
the on-site energy, and � > 0 the strength of the self-
defocusing nonlinearity of the medium. The left hand
side describes the propagation along the longitudinal z
axis of the waveguide, and replaces time in the
Schrödinger equation. We measure all distances in units
of the incident light wave number; hence z, C, �k, and
�jAkj2 are dimensionless.

The possibility to engineer the different characteristics
of the array make these photonic lattices unique in their
ability to control the flow of light. A laser beam is shone on
the input facet of an array of N waveguides, propagates
across the photonic lattice, to finally reach the output facet
where the intensity distribution is measured (as shown in
Fig. 1). The length of the structure in the z direction thus
determines the time of propagation across the lattice.

In order to test superfluidity of light, we are interested in
the scattering properties of an incident pulse on a localized
defect. In the absence of a defect, the light pulse spreads in
a way that strongly depends on the nonlinear coefficient.
We are not interested in this free propagation, which was
studied in detail in the past [12]. Ideally, we would like to
analyze the propagation of a packet whose shape is, in the
absence of the obstacle, independent of time, in order to
clearly single out the influence of the defect on its propa-
gation. There are different ways to realize this. One possi-
bility, which is easily accessible experimentally, is to
control the on-site energies �k by modulating the width
of each waveguide to build a harmonic confining potential,
�k ¼ �0 þ 1

2!
2k2, where �0 is the reference on-site energy,

and ! measures the frequency in units of normalized 1=z
[15]. The site k ¼ 0 defines the center of the lattice. The
advantages of such a set up are multiple. One can shine on
the lattice a light packet whose center is located at an
arbitrary distance d from the bottom of the potential. As

it propagates in the longitudinal direction, the packet will
oscillate in the transverse direction with frequency ! [16].
One can show that for � > 0 the frequency ! coincides
with that of � ¼ 0 [17]. Moreover, the shape of the packet
does not vary in time if initially it is given by the (trans-
lation) of the stationary ground state solution of Eq. (1).
Thus, with a positive nonlinearity, such a light packet
oscillates with a frozen shape, and its velocity at the bottom
of the potential is v ¼ !d. This allows us to control the
transverse speed of light.
We now include the defect at the center of the harmonic

potential. A simple way to experimentally implement it is
by a local variation of the on-site energy, �k ¼
�0 þ 1

2!
2k2 þU0�k;0 (where U0 represents the defect

strength). The purpose now is to study, for different relative
velocities v, the oscillations of the light packet in the
presence of the defect. If the light is scattered by the defect,
dissipative processes are induced that transform the coher-
ent collective oscillation into disordered fluctuations of the
light intensity. As a consequence a damping of the collec-
tive character of the oscillations is expected. On the con-
trary, if SF motion occurs, the light pulse is able to move
through the defect without losing collectivity (e.g., without
changing its global shape). It only creates a local intensity
depletion around the defect [18]. By analogy with the
dispersion relation of the corresponding (continuous)
Gross-Pitaevsky equation, Eq. (1) predicts a SF motion
for velocities below a critical threshold vc which, for

weak perturbations, is of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C�jAj2p

, where
jAj2 is the light intensity at the center of the light pulse.
For typical experimental set ups [19], this velocity is vc �
2� 10�2, which corresponds, in the original units, to the
ratio of the transverse speed to the speed of light in the
photonic structure.
Figure 2 shows, for different initial positions d, the first

oscillations of the light packet. In the absence of an ob-
stacle [Fig. 2(a)], the packet oscillates freely with constant
shape and amplitude. In presence of the defect and for
small amplitudes [Fig. 2(b)], no damping or dissipative
process is observed (see right column of the figure). The
only manifestation of the presence of the defect on the light
pulse is a local intensity depletion at the position of the
defect, which is clearly visible in Fig. 2(b) as a horizontal
red line. The motion is qualitatively similar to the free
oscillation of the light pulse, shown in Fig. 2(a), aside from
a slight modification of the frequency, that can be ex-
plained theoretically [20]. Increasing the amplitude and
thus the relative velocity with respect to the defect, there
is a critical speed above which the shape of the light pulse
is qualitatively modified as it propagates [Fig. 2(c)]. What
is observed is, in particular, the emission of grey solitonlike
perturbations (dark blue trajectory), which detach from the
defect and travel across the light packet with a non trivial
dynamics. This dissipative process produces a damping
of the oscillations. As the velocity is further increased

FIG. 1 (color online). Schematic view of an array of wave-
guides. The red arrows indicate the input beam and the output
facet, where the light intensity distribution is measured.
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[Fig. 2(d)], the shape of the light pulse is subjected to
massive deformations through phononlike and solitonic
emissions. The complex dynamics of the excitations sig-
nals the onset of a strong dissipative process that destroys
the collectivity of the oscillations, thus leading to a strong
damping.

A quantitative way to characterize the dissipative pro-
cess observed in Fig. 2 is to numerically evaluate the
fluidity factor, defined as the ratio of the amplitude of the
oscillation around some final time, to the initial amplitude,
�kkjAkj2=�kkjA0

kj2, where the A0
k’s are the incident ampli-

tudes of the field. This factor varies from 0 for a totally
damped motion to 1 for an undamped one. We show in
Fig. 3 the computation of the fluidity factor for different
velocities and different attractive (U0 < 0) and repulsive

(U0 > 0) defect strengths. The final time corresponds to 50
free oscillation periods. The velocities are normalized to
the perturbative critical velocity, defined as cs ¼

ffiffiffiffiffiffiffiffiffiffi

2C�
p

,
where � is the chemical potential of the incident light
packet, � ¼ �kA

0�
k f�CðA0

kþ1 þ A0
k�1Þ þ �jA0

kj2A0
k þ 1

2 �
ð!kÞ2A0

kg. At low velocities, the fluidity factor is equal to

one and the light pulse presents a perfect transmission
through the scattering potential. A local peak (dip) is
observed on the light intensity when the defect is attractive
(repulsive), but this does not affect qualitatively the dy-
namics of the oscillations. This demonstrates that the
transverse motion of the light is superfluid for a well-
defined parameter range in transverse speed of light and
defect strength. As the velocity increases a sharp transition
towards a phase of damped dynamics is observed. This
border defines the critical velocity vc. Above vc, nonlocal
dissipative excitations are allowed, and superfluidity
breaks down. As shown in Fig. 3, vc coincides with the
perturbative one, cs, for weak defect strengths. However, as
the strength increases, vc deviates from the perturbative
estimate. A nonperturbative analysis is required to describe
the threshold [18,20]. That analysis also allows us to ex-
plain the dissymmetry observed in Fig. 3 between positive
and negative values of U0. The critical velocity as a func-
tion of the strength of the defect, shown in Fig. 3, is
computed by solving the equation
U0=� ¼ KðvcðU0Þ=csÞ, where KðxÞ ¼ 1

2
ffiffi

2
p

x
ð� 8x4�

20x2 þ 1þ ð1þ 8x2Þ3=2Þ1=2.
The method used here to test superfluidity of light has a

close counterpart in the physics of ultracold atoms. The
influence of a local potential on the flow of a condensate
[18,21] or on the damping of dipole oscillations [20,22,23]
became in recent years an important and accepted experi-
mental and theoretical tool to analyze the dynamics of
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FIG. 3 (color online). Fluidity factor computed after a time
zf ¼ 50 � 2�=!, as a function of the normalized strength of the

defect and transverse speed of the light pulse. Yellow regions
correspond to SF motion, whereas damping is observed in the
darker regions. The dashed line represents the analytical non-
perturbative prediction of the critical velocity (see text). The full
dots (a)–(d) indicate the parameters used in Fig. 2 [(a): U0 ¼ 0,
v=cs ¼ 0:23; (b),(c) and (d): U0=� ¼ 0:48 and v=cs ¼ 0:23,
0.76 and 1.05, respectively].

FIG. 2 (color online). Time evolution of a light pulse prop-
agating through an array of waveguides modulated by a har-
monic on-site energy, with parameters C ¼ 100, ! ¼ 0:1,
� ¼ 80, N ¼ 300. Left column: intensity, normalized to the
maximal one. Right column: amplitude of the oscillatory motion
of the light packet barycenter (for the first � 50 oscillations; the
amplitude is normalized to the initial value). Top panel (a): Free
motion. Following panels (b)–(d): Oscillation in presence of an
additional obstacle located at the center of the lattice. (b): SF
motion. (c): Speed slightly above the critical velocity. (d): Speed
well above the critical velocity.
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ultracold Bose-Einstein condensates, in particular, as a test
of superfluidity.

We have considered here nonlinear optics at a purely
classical level. In the paraxial approximation, its formal
description is identical to the Gross-Pitaevsky equation,
which describes a mean-field dilute condensate of atoms.
Many open issues, related to the underlying microscopic
quantum theory of light and to its connections with the
phenomenon of Bose-Einstein condensation, deserve fur-
ther investigation [14]. In a wider context, the physics
described here is similar to that observed in the wave
resistance of a moving disturbance at the surface of a liquid
[24], or to the Cherenkov radiation of a charged particle
moving through a dielectric medium [25].

To conclude, we have shown that, in a typical experi-
ment, for transverse speeds of the order of 10�2 the speed
of light in a self-defocusing nonlinear medium the light
motion becomes superfluid. In contrast, superfluidity does
not occur in a focusing (� < 0) medium. The effect de-
scribed is not inherent to discrete lattice structures, and is
expected to occur in continuous media as well, provided
the refraction index can be carefully designed. The main
interest of the setup based on an array of waveguides is
the ability to easily control the different parameters.
Furthermore, in our effective one-dimensional geometry
we have also identified the emission of solitonic and pho-
nonlike excitations as the main mechanisms that contribute
to the breakdown of the SF motion above the critical
velocity. In two dimensions superfluidity is also expected
to occur, with a transition to a dissipative flow related to the
emission of optical vortices. We believe the SF motion
described here is a general property, which may be ob-
served for an arbitrary scattering potential (not limited to a
localized defect). The propagation in the presence of, e.g.,
random fluctuations of the on-site energies or of the re-
fraction index is of particular interest, since randomness is
inherent to any fabrication process. In analogy with similar
recent studies in the physics of ultracold atoms [23,26], one
may expect the existence of SF motion of light in presence
of disorder.

We thank M. Albert, N. Pavloff, and Y. Lahini for
fruitful discussions and T. Paul for providing us a nonlinear
Schrödinger equation program.
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