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The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an
article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic
field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as
an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical
wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail
in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more.
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The “photon” is a quintessentially twentieth-century con-
cept, intimately tied to the birth of quantum mechanics

and quantum electrodynamics. However, the root of the idea
may be said to be much older, as old as the historical debate
on the nature of light itself – whether it is a wave or a particle
– one that has witnessed a seesaw of ideology from antiquity
to present. The transition from classical to quantum descrip-
tions of light presents yet another dichotomy, one where the
necessity of quantizing the electromagnetic field (over and
above a quantization of matter) has been challenged. The
resolution lies in uncovering key behavior of quantum light
fields that are beyond the domain of the classical, such as
vacuum fluctuations and quantum entanglement, which ne-
cessitate a quantum theory of radiation.2−5 Nevertheless, a
precise grasp of the “photon” concept is not an easy task, to
quote Albert Einstein:

“These days, every Tom, Dick and Harry thinks he
knows what a photon is, but he is wrong.”

We ought to proceed with diligence and caution. In the words
of Willis Lamb:6

“What do we do next? We can, and should, use the
Quantum Theory of Radiation. Fermi showed how
to do this for the case of Lippmann fringes. The
idea is simple, but the details are somewhat messy.
A good notation and lots of practice makes it easier.
Begin by deciding how much of the universe needs
to be brought into the discussion. Decide what nor-
mal modes are needed for an adequate treatment.
Decide how to model the light sources and work
out how they drive the system.”

We proceed to elucidate the photon concept by specific ex-
periments (real and gedanken) which demonstrate the need
for and shed light on the meaning of the “photon.” Specif-
ically, we will start by briefly reviewing the history of the
wave-particle debate and then giving seven of our favorite
examples, each clarifying some key aspect of the quantum
nature of light. The two facets of the photon that we focus

on are vacuum fluctuations (as in our earlier article1), and as-
pects of many-particle correlations (as in our recent book2).
Examples of the first are spontaneous emission, Lamb shift,
and the scattering of atoms off the vacuum field at the en-
trance to a micromaser. Examples of the second facet include
quantum beats, quantum eraser, and photon correlation mi-
croscopy. Finally, in the example of two-site downconversion
interferometry, the essence of both facets is combined and
elucidated.
In the final portions of the article, we return to the basic

questions concerning the nature of light in the context of the
wave-particle debate: What is a photon and where is it? To
the first question, we answer in the words of Roy Glauber:

“A photon is what a photodetector detects.”

To the second question (on the locality of the photon), the an-
swer becomes: “A photon is where the photodetector detects
it.” In principle, the detector could be a microscopic object
such as an atom. Guided by this point of view, we address
the much debated issue of the existence of a photon wave
function ψ(r, t).2,7,8 Arguments to the contrary notwithstand-
ing, we show that the concept of the photon wave function
arises naturally from the quantum theory of photodetection
(see Ref. [2], ch. 1). A wealth of insight is gained about the
interference and entanglement properties of light by studying
such one-photon, and related two-photon, ‘wave functions’.2

Light – wave or particle?

The nature of light is a very old issue in the history of sci-
ence. For the ancient Greeks and Arabs, the debate centered
on the connection between light and vision. The tactile theory,
which held that our vision was initiated by our eyes reach-
ing out to “touch” or feel something at a distance, gradually
lost ground to the emission theory, which postulated that vi-
sion resulted from illuminated objects emitting energy that
was sensed by our eyes. This paradigm shift is mainly due
to the eleventh-century Arab scientist Abu Ali Hasan Ibn Al-
Haitham (or ‘Alhazen’) who laid the groundwork for classical
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optics through investigations into the refraction and disper-
sion properties of light. Later Renaissance thinkers in Europe
envisioned light as a stream of particles, perhaps supported
by the ether, an invisible medium thought to permeate empty
space and all transparent materials.
In the seventeenth century, Pierre de Fermat introduced the

principle of least time to account for the phenomenon of re-
fraction. Equivalently, his principle states that a ray of light
takes the path that minimizes the optical path length between
two points in space:

δ
∫ r

r0
n ds= 0, (1)

where n = c/v is the (spatially varying) refractive index that
determines the velocity of the light particle, and δ denotes a
variation over all paths connecting r0 and r. Fermat’s princi-
ple is the foundation for geometrical optics, a theory based on
the view that light is a particle that travels along well-defined
geometrical rays. The idea of light as particle (or ‘corpuscle’)
was of course adopted by Isaac Newton, who bequeathed the
weight of his scientific legacy, including the bearing of his
laws of mechanics, on the nature of light.
Christian Huygens on the other hand, a contemporary of

Newton, was a strong advocate of the wave theory of light.
He formulated a principle (that now bears his name) which
describes wave propagation as the interference of secondary
wavelets arising from point sources on the existing wave-
front. It took the mathematical genius of Augustin Fresnel,
150 years later, to realize the consequences of this discov-
ery, including a rigorous development of the theory of wave
diffraction. Light does not form sharp, geometrical shadows
that are characteristic of a particle, but bends around obstacles
and apertures.
The revival of the wave theory in the early nineteenth cen-

tury was initiated by Thomas Young. In 1800, appearing be-
fore the Royal Society of London, Young spoke for an anal-
ogy between light and sound, and declared later that a two-slit
interference experiment would conclusively demonstrate the
wave nature of light (see Figure 1). It is hard for the mod-
ern reader to visualize how counter-intuitive this suggestion
was at the time. The idea that a screen uniformly illuminated
by a single aperture could develop dark fringes with the in-
troduction of a second aperture – that the addition of more
light could result in less illumination – was hard for Young’s
audience to digest.
Likewise, Fresnel’s diffraction theory was received with

skepticism by the judges on the 1819 prize committee in
Paris. In particular, the esteemed Pierre Simon de Laplace
was very skeptical of the wave theory. His protégé, Siméon-
Denis Poisson, highlighted the seemingly absurd fact that the
theory implied a bright spot at the center of the shadow of
an illuminated opaque disc, now known as Poisson’s spot.
The resistance to switch from a particle description to a wave
description for light by these pre-eminent scientists of the
early nineteenth century gives an indication of the great dis-
parity between these two conceptions. It was a precursor of
the struggle to come a hundred years later with the advent of

quantum mechanics.

screenlight propagates

Fig. 1. Young’s two-slit experiment – Light incident on two
slits in a box propagates along two pathways to a given point
on the screen, displaying constructive and destructive inter-
ference. When a single photon is incident on the slits, it is
detected with highest probability at the interference peaks,
but never at the interference nodes.

a

b

Fig. 2. Spontaneous emission – Two-level atom, with upper-
level linewidth Γ spontaneously emits a photon. Fluctuations
in the vacuum field cause the electron in the excited state to
decay to the ground state in a characteristic time Γ−1.

The wave theory really came into its own in the late nine-
teenth century in the work of James Clerk Maxwell. His four
equations, known to all students of undergraduate physics,
is the first self-contained theory of radiation. Receiving ex-
perimental confirmation by Heinrich Hertz, the Maxwell the-
ory unified the disparate phenomena of electricity and mag-
netism, and gave physical meaning to the transverse polar-
izations of light waves. The far-reaching success of the the-
ory explains the hubris of late nineteenth century physicists,
many of whom believed that there were really only two
“clouds” on the horizon of physics at the dawn of the twenti-
eth century. Interestingly enough, both of these involved light.
The first cloud, namely the null result of the Michelson-

Morley experiment, led to special relativity, which is the
epitome of classical mechanics, and the logical capstone of
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classical physics. The second cloud, the Rayleigh-Jeans ul-
traviolet (UV) catastrophe and the nature of blackbody ra-
diation, led to the advent of quantum mechanics, which of
course was a radical change in physical thought. While both
of these problems involved the radiation field, neither (ini-
tially) involved the concept of a photon. That is, neither Al-
bert Einstein and Hendrik Lorentz in the first instance, nor
Max Planck in the second, called upon the particulate nature
of light for the explanation of the observed phenomena. Rel-
ativity is strictly classical, and Planck quantized the energies
of the oscillators in the walls of his cavity, not the field.9
The revival of the particle theory of light, and the begin-

ning of the modern concept of the photon, was due to Ein-
stein. In his 1905 paper on the photoelectric effect,10 the
emission of electrons from a metallic surface irradiated by
UV rays, Einstein postulated that light comes in discrete bun-
dles, or quanta of energy, borrowing Planck’s five-year old
hypothesis: E = h̄ν , where ν is the circular frequency and
h̄ is Planck’s constant divided by 2π . This re-introduced the
particulate nature of light into physical discourse, not as lo-
calization in space in the manner of Newton’s corpuscles, but
as discreteness in energy. But irony upon irony, it is a histori-
cal curiosity that Einstein got the idea for the photon from the
physics of the photoelectric effect. In fact, it can be shown
that the essence of the photoelectric effect does not require
the quantization of the radiation field,11 a misconception per-
petuated by the mills of textbooks, to wit, the following quote
from a mid-century text:12

“Einstein’s photoelectric equation played an enor-
mous part in the development of the modern quan-
tum theory. But in spite of its generality and of the
many successful applications that have been made
of it in physical theories, the equation:

h̄ν = E+Φ (2)

is, as we shall see presently, based on a concept
of radiation – the concept of ‘light quanta’ – com-
pletely at variance with the most fundamental con-
cepts of the classical electromagnetic theory of ra-
diation.”

We will revisit the photoelectric effect in the next section and
place it properly in the context of radiation theory.
Both the Planck hypothesis and the Einstein interpreta-

tion follow from considerations of how energy is exchanged
between radiation and matter. Instead of an electromagnetic
wave continuously driving the amplitude of a classical oscil-
lator, we have the discrete picture of light of the right fre-
quency absorbed or emitted by a quantum oscillator, such as
an atom in the walls of the cavity, or on a metallic surface.
This seemingly intimate connection between energy quanti-
zation and the interaction of radiation with matter motivated
the original coining of the word “photon” by Gilbert Lewis in
1926:13

“It would seem inappropriate to speak of one of
these hypothetical entities as a particle of light, a

corpuscle of light, a light quantum, or light quant, if
we are to assume that it spends only a minute frac-
tion of its existence as a carrier of radiant energy,
while the rest of the time it remains as an impor-
tant structural element within the atom... I therefore
take the liberty of proposing for this hypothetical
new atom, which is not light but plays an essential
part in every process of radiation, the name pho-
ton.”

Energy quantization is the essence of the old quantum theory
of the atom proposed by Niels Bohr. The electron is said to
occupy discrete orbitals with energies Ei and Ej, with transi-
tions between them caused by a photon of the right frequency:
ν = (Ei−Ej)/h̄. An ingenious interpretation of this quantiza-
tion in terms of matter waves was given by Louis de Broglie,
who argued by analogy with standing waves in a cavity, that
the wavelength of the electron in each Bohr orbital is quan-
tized – an integer number of wavelengths would have to fit
in a circular orbit of the right radius. This paved the way
for Erwin Schrödinger to introduce his famous wave equa-
tion for matter waves, the basis for (non-relativistic) quantum
mechanics of material systems.
Quantum mechanics provides us with a new perspective

on the wave-particle debate, vis á vis Young’s two-slit experi-
ment (Figure 1). In the paradigm of quantum interference, we
add the probability amplitudes associated with different path-
ways through an interferometer. Light (or matter) is neither
wave nor particle, but an intermediate entity that obeys the su-
perposition principle. When a single photon goes through the
slits, it registers as a point-like event on the screen (measured,
say, by a CCD array). An accumulation of such events over
repeated trials builds up a probabilistic fringe pattern that is
characteristic of classical wave interference. However, if we
arrange to acquire information about which slit the photon
went through, the interference nulls disappear. Thus, from the
standpoint of complementarity, both wave and particle per-
spectives have equal validity. We will return to this issue later
in the article.

The semiclassical view

The interaction of radiation and matter is key to understand-
ing the nature of light and the concept of a photon. In the
semiclassical view, light is treated classically and only mat-
ter is quantized. In other words, both are treated on an equal
footing: a wave theory of light (the Maxwell equations) is
combined self-consistently with a wave theory of matter (the
Schrödinger equation). This yields a remarkably accurate de-
scription of a large class of phenomena, including the photo-
electric effect, stimulated emission and absorption, saturation
effects and nonlinear spectroscopy, pulse propagation phe-
nomena, “photon” echoes, etc. Many properties of laser light,
such as frequency selectivity, phase coherence, and direction-
ality, can be explained within this framework.14
The workhorse of semiclassical theory is the two-level

atom, specifically the problem of its interaction with a sinu-
soidal light wave.15 In reality, real atoms have lots of levels,
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but the two-level approximation amounts to isolating a partic-
ular transition that is nearly resonant with the field frequency
ν . That is, the energy separation of the levels is assumed to
be Ea−Eb = h̄ω ≈ h̄ν . Such a comparison of the atomic en-
ergy difference with the field frequency is in the spirit of the
Bohr model, but note that this already implies a discreteness
in light energy, ∆E = h̄ν . That a semiclassical analysis is able
to bring out this discreteness – in the form of resonance – is
a qualitative dividend of this approach.
Schrödinger’s equation describes the dynamics of the

atom, but how about the dynamics of the radiation field?
In the semiclassical approach, one assumes that the atomic
electron cloud ψ∗ψ , which is polarized by the incident field,
acts like an oscillating charge density, producing an ensemble
dipole moment that re-radiates a classical Maxwell field. The
effects of radiation reaction, i.e., the back action of the emit-
ted field on the atom, are taken into account by requiring the
coupled Maxwell-Schrödinger equations to be self-consistent
with respect to the total field. That is, the field that the atoms
see should be consistent with the field radiated. In this way,
semiclassical theory becomes a self-contained description of
the dynamics of a quantum mechanical atom interacting with
a classical field. As we have noted above, its successes far
outweigh our expectations.
Let us apply the semiclassical analysis to the photoelectric

effect, which provided the original impetus for the quanti-
zation of light. There are three observed features of this ef-
fect that need accounting. First, when light shines on a photo-
emissive surface, electrons are ejected with a kinetic energy
E equal to h̄ times the frequency ν of the incident light less
some work function Φ, as in Eq. (2). Second, it is observed
that the rate of electron ejection is proportional to the square
of the incident electric field E0. Third, and more subtle, there
is not necessarily a time delay between the instant the field
is turned on, and the time when the photoelectron is ejected,
contrary to classical expectations.
All three observations can be nominally accounted for by

applying the semiclassical theory to lowest order in perturba-
tion of the atom-field interaction V (t) = −eE0r.11 This fur-
nishes a Fermi Golden Rule for the probability of transition
of the electron from the ground state g of the atom to the kth
excited state in the continuum:

Pk =
[
2π(e|rkg|E0/2h̄)2 t

]
δ [ν − (Ek−Eg)/h̄], (3)

where erkg is the dipole matrix element between the initial
and final states. The δ -function (which has units of time)
arises from considering the frequency response of the surface,
and assuming that t is at least as long as several optical cycles:
νt ≫ 1. Now, writing energy Ek−Eg as E + Φ, we see that
the δ -function immediately implies Eq. (2). The second fact
is also clearly contained in Eq. (3) since Pk is proportional to
E20 . The third fact of photoelectric detection, the finite time
delay, is explained in the sense that Pk is linearly proportional
to t, and there is a finite probability of the atom being excited
even at infinitesimally small times.
Thus, the experimental aspects of the photoelectric effect

are completely understandable from a semiclassical point of

view. Where we depart from a classical intuition for light is a
subtle issue connected with the third fact, namely that there is
negligible time delay between the incidence of light and the
photoelectron emission. While this is understandable from an
atomic point of view – the electron has finite probability of
being excited even at very short times – the argument breaks
down when we consider the implications for the field. That
is, if we persist in thinking about the field classically, energy
is not conserved. Over a time interval t, a classical field E0
brings in a flux of energy ε0E20At to bear on the atom, where
A is the atomic cross-section. For short enough times t, this
energy is negligible compared to h̄ν , the energy that the elec-
tron supposedly absorbs (instantaneously) when it becomes
excited. We just do not have the authority, within the Maxwell
formalism, to affect a similar quantum jump for the field en-
ergy.
For this and other reasons (see next section), it behooves us

to supplement the epistemology of the Maxwell theory with
a quantized view of the electromagnetic field that fully ac-
counts for the probabilistic nature of light and its inherent
fluctuations. This is exactly what Paul Dirac did in the year
1927, when the photon concept was, for the first time, placed
on a logical foundation, and the quantum theory of radiation
was born.16 This was followed in the 1940s by the remark-
ably successful theory of quantum electrodynamics (QED) –
the quantum theory of interaction of light and matter – that
achieved unparalleled numerical accuracy in predicting ex-
perimental observations. Nevertheless, a short twenty years
later, we would come back full circle in the saga of semiclas-
sical theory, with Ed Jaynes questioning the need for a quan-
tum theory of radiation at the 1966 conference on Coherence
and Quantum Optics at Rochester, New York.
“Physics goes forward on the shoulders of doubters, not be-

lievers, and I doubt that QED is necessary,” declared Jaynes.
In his view, semiclassical theory – or ‘neoclassical’ theory,
with the addition of a radiation reaction field acting back on
the atom – was sufficient to explain the Lamb shift, thought
by most to be the best vindication yet of Dirac’s field quan-
tization and QED theory (see below). Another conference
attendee, Peter Franken, challenged Jaynes to a bet. One of
us (MOS) present at the conference recalls Franken’s words:
“You are a reasonably rich man. So am I, and I say put your
money where your face is!” He wagered $100 over whether
the Lamb shift could or could not be calculated without QED.
Jaynes took the bet that he could, and Willis Lamb agreed to
be the judge.
In the 1960s and 70s, Jaynes and his collaborators reported

partial success in predicting the Lamb shift using neoclassi-
cal theory.17 They were able to make a qualitative connec-
tion between the shift and the physics of radiation reaction –
in the absence of field quantization or vacuum fluctuations –
but failed to produce an accurate numerical prediction which
could be checked against experiment. For this reason, at the
1978 conference in Rochester, Lamb decided to yield the
bet to Franken. An account of the arguments for and against
this decision was summarized by Jaynes in his paper at the
conference.18 In the end, QED had survived the challenge
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of semiclassical theory, and vacuum fluctuations were indeed
“very real things” to be reckoned with.

Seven examples

Our first three examples below illustrate the reality of vac-
uum fluctuations in the electromagnetic field as manifested
in the physics of the atom. The “photon” acquires a stochas-
tic meaning in this context. One speaks of a classical elec-
tromagnetic field with fluctuations due to the vacuum. To be
sure, one cannot “see” these fluctuations with a photodetec-
tor, but they make their presence felt, for example, in the way
the atomic electrons are “jiggled” by these random vacuum
forces.

1. Spontaneous emission

In the phenomenon of spontaneous emission,19 an atom in
the excited state decays to the ground state and spontaneously
emits a photon (see Figure 2). This “spontaneous” emission is
in a sense stimulated emission, where the stimulating field is
a vacuum fluctuation. If an atom is placed in the excited state
and the field is classical, the atom will never develop a dipole
moment and will never radiate. In this sense, semiclassical
theory does not account for spontaneous emission. However,
when vacuum fluctuations are included, we can think concep-
tually of the atom as being stimulated to emit radiation by the
fluctuating field, and the back action of the emitted light will
drive the atom further to the ground state, yielding decay of
the excited state. It is in this way that we understand sponta-
neous emission as being due to vacuum fluctuations.

2. Lamb shift

Perhaps the greatest triumph of field quantization is the ex-
planation of the Lamb shift20 between, for example, the 2s1/2
and 2p1/2 levels in a hydrogenic atom. Relativistic quantum
mechanics predicts that these levels should be degenerate, in
contradiction to the experimentally observed frequency split-
ting of about 1 GHz. We can understand the shift intuitively21
by picturing the electron forced to fluctuate about its first-
quantized position in the atom due to random kicks from the
surrounding, fluctuating vacuum field (see Figure 3). Its aver-
age displacement ⟨∆r⟩ is zero, but the squared displacement
⟨∆r⟩2 is slightly nonzero, with the result that the electron
“senses” a slightly different Coulomb pull from the positively
charged nucleus than it normally would. The effect is more
prominent nearer the nucleus where the Coulomb potential
falls off more steeply, thus the s orbital is affected more than
the p orbital. This is manifested as the Lamb shift between
the levels.

3. Micromaser – scattering off the vacuum

A micromaser consists of a single atom interacting with a
single-mode quantized field in a high-Q cavity.22 An interest-
ing new perspective on vacuum fluctuations is given by the
recent example of an excited atom scattering off an effective
potential barrier created by a vacuum field in the cavity (see

Figure 4).23 When the atomic center-of-mass motion is quan-
tized, and the atoms are travelling slow enough (their kinetic
energy is smaller than the atom-field interaction energy), it is
shown that they can undergo reflection from the cavity, even
when it is initially empty, i.e. there are no photons. The reflec-
tion of the atom takes place due to the discontinuous change
in the strength of the coupling with vacuum fluctuations at the
input to the cavity. This kind of reflection off an edge discon-
tinuity is common in wave mechanics. What is interesting in
this instance is that the reflection is due to an abrupt change
in coupling with the vacuum between the inside and the out-
side of the cavity. It is then fair to view this physics as another
manifestation of the effect of vacuum fluctuations, this time
affecting the center-of-mass dynamics of the atom.

2s

2p

Fig. 3. Lamb shift – Schematic illustration of the Lamb shift
of the hydrogenic 2s1/2 state relative to the 2p1/2 state. Intu-
itive understanding of the shift as due to random jostling of
the electron in the 2s orbital by zero-point fluctuations in the
vacuum field.

Excited
  atom

Cavity
with no
photons

Fig. 4. Scattering off the vacuum – An excited atom approach-
ing an empty cavity can be reflected for slow enough veloci-
ties. The vacuum cavity field serves as an effective potential
barrier for the center-of-mass wave function of the atom.

Our next three examples involve the concept of multi-
particle entanglement, which is a distinguishing feature of the
quantized electromagnetic field. Historically, inter-particle
correlations have played a key role in fundamental tests of
quantum mechanics, such as the EPR paradox, Bell inequal-
ities and quantum eraser. These examples illustrate the real-
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Beats No Beats

Fig. 5. Quantum beats – a) When a single atom decays from
either of two upper levels to a common lower level, the two
transition frequencies produce a beat note ωα − ωβ in the
emitted photon. b) No beats are present when the lower levels
are distinct, since the final state of the atom provides distin-
guishing information on the decay route taken by the photon.

ity of quantum correlations in multi-photon physics. In re-
cent years, entangled photons have been key to applications
in quantum information and computing, giving rise to new
technologies such as photon correlation microscopy (see be-
low).

4. Quantum beats

In general, beats arise whenever two or more frequencies of
a wave are simultaneously present. When an atom in the ex-
cited state undergoes decay along two transition pathways,
the light produced in the process is expected to register a beat
note at the difference frequency, ωα −ωβ , in addition to the
individual transition frequencies ωα and ωβ . However, when
a single atom decays, beats are present only when the two fi-
nal states of the atom are identical (see Figure 5). When the
final states are distinct, quantum theory predicts an absence of
beats.24 This is so because the two decay channels end in dif-
ferent atomic states [|b⟩ or |c⟩ in Figure 5(b)]. We now have
which-path information since we need only consult the atom
to see which photon (α or β ) was emitted – i.e. the entangle-
ment between the atom and the quantized field destroys the
interference. Classical electrodynamics, vis á vis semiclassi-
cal theory, cannot explain the “missing” beats.

5. Quantum eraser and complementarity

In the quantum eraser,25 the which-path information about the
interfering particle is erased by manipulating the second, en-
tangled particle. Complementarity is enforced not by the un-
certainty principle (through a measurement process), but by
a quantum correlation between particles.26 This notion can
be realized in the context of two-photon interferometry.27−29
Consider the setup shown in Figure 6, where one of two atoms
i= 1,2 emits two photons φi and γi. Interference is observed
in φ only when the spatial origin of γ cannot be discerned,
i.e., when detector D1 or D2 clicks. Erasure occurs when the
γ photon is reflected (rather than transmitted) at beamsplitter

BS1 or BS2, which in the experiment occurs after the φ pho-
ton has been detected. Thus, quantum entanglement between
the photons enables a realization of ‘delayed choice’,30 which
cannot be simulated by classical optics.

6. Photon correlation microscopy

Novel interference phenomena arise from second-order cor-
relations of entangled photons, such as arise from the sponta-
neous cascade decay of a three-level atom (where the emitted
photons are correlated in frequency and time of emission).2
When two such atoms are spatially separated and one of them
undergoes decay, a two-photon correlation measurement en-
ables high-resolution spectralmicroscopy on the atomic level
structure.31 It can be shown that the resolution of the up-
per two levels a and b in each atom is limited only by the
linewidth Γa, and not by Γa and Γb together (as is usually
the case). This phenomenon relies on the path and frequency
entanglement between the two photons arising from spatially
separated cascade sources.
A further consequence of the two-atom geometry is the en-

hancement in spatial resolution that occurs because the pho-
tons are entangled in path – that is, the photon pair arises from
one atom or the other, and their joint paths interfere. Coin-
cident detection of the two photons (each of wavelength λ )
shows a fringe resolution that is enhanced by a factor of two
as compared to the classical Rayleigh limit, λ/2. This enables
applications in high-resolution lithography.32,33 The fringe
doubling is due to the fact that the two photons propagate
along the same path, and their sum frequency, 2ω , character-
izes their joint detection probability. Path entanglement can-
not be simulated by (co-propagating) classical light pulses.

7. Two-site downconversion interferometry

In what follows, we consider a two-particle interferometry
experiment that allows us to elucidate both facets of the pho-
ton considered above – vacuum fluctuations and quantum
entanglement. The thought experiment we have in mind is
based on an actual one that was carried out using paramet-
ric downconversion.34 Consider the setup shown in Figure 7,
where two atoms i= 1,2 are fixed in position and one of them
emits two photons, labeled φi and γi, giving rise to a two-
photon state that is a superposition of emissions from each
atom:

|Ψ⟩ =
1√
2

(|φ1⟩|γ1⟩+ |φ2⟩|γ2⟩) . (4)

This is an entangled state in the sense that an emission of φi
is always accompanied by an emission of γi, for i = 1 or 2.
Let us suppose that we are interested in interference of the
φ photon only, as measured by varying the path lengths of
φ1 and φ2 to detector Dφ . The γ photon serves as a marker
that potentially records which atom emitted the φ photon. It
is found that by inserting (or removing) a beamstop in the
path of γ1, the interference fringes can be made to vanish (or
re-appear) at Dφ , even when Dγ is not actually observed.
It is interesting to explain this phenomenon using stochas-

tic electrodynamics35 (as was done with the Lamb shift). Let
us replace the two photons φ and γ with classical light fields
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Eφ
i (r, t) and Eγ

i (r, t), generated respectively by dipole tran-
sitions a-b and b-c in each atom i. If the atoms are initially
in a superposition of states a and c, then zero-point fluctua-
tions in the field mode γ will introduce population into level
b (from a), with a random phase ϕγ ,i. The first-order inter-
ference in the field mode φ will now depend on an ensemble
average over the vacuum-induced two-atom phase difference:
⟨Eφ
1 E

φ
2 ⟩ ∝ ⟨exp[−i(ϕγ ,1−ϕγ ,2)]⟩. This quantity goes to zero

if the two phases are statistically independent, which is the
case when the beamstop is in place between the two atoms.
Thus, we have here a connection between vacuum fluctua-
tion physics (which is responsible for spontaneous emission
of photons), and two-particle correlation physics (which is the
key to quantum erasure).

The quantum field theory view

A quantum theory of radiation2−5 is indispensable to un-
derstanding the novel properties of light mentioned above.
Central to the theory is the idea of field quantization, which
develops the formal analogy with the quantum mechanics
of the harmonic oscillator. The position q and momentum
p of an oscillating particle satisfy the commutation relation
[q̂, p̂ ] = q̂ p̂− p̂ q̂= ih̄. In the case of the radiation field, q and
p represent the electric (E) and magnetic (B) fields of the light
in a given wave-vector and polarization mode k. Thus, the
quantum electromagnetic field consists of an infinite product
of such generalized harmonic oscillators, one for each mode
of the field. A Heisenberg-type uncertainty relation applies to
these quantized Maxwell fields:

∆E∆B≥ h̄/2× constant. (5)

Such field fluctuations are an intrinsic feature of the quan-
tized theory. The uncertainty relation can also be formulated
in terms of the in-phase (Ep) and in-quadrature (Eq) compo-
nents of the electric field, where E(t) = Ep cosνt+Eq sinνt.
To introduce the notion of a photon, it is convenient to re-

cast the above quantization of the field in terms of a Fourier
decomposition, or in terms of the normal modes of a field in
a cavity. These correspond to the positive frequency (going
like e−iνt) and negative frequency (going like eiνt) parts of
the electric field respectively (summed over all modes k):

E(r, t) = E+(r, t)+E−(r, t)
= ∑

k
[αkEk(r)exp(−iνkt)

+α∗
k E ∗

k (r)exp(iνkt)]. (6)

Here αk is the amplitude of oscillation, and Ek(r) is a mode
function like exp(ik ·r) for travelling waves in free space and
sin(k ·r) for standing waves in a box. We consider the oscilla-
tor amplitudes αk and α∗

k , corresponding to harmonic motion,
to be quantized by replacing αk → âk and α∗

k → â†k . By anal-
ogy to the quantum mechanics of the harmonic oscillator, the
application of â produces a field state with one less quantum
of energy, and the application of â† produces a field state with

one more quantum of energy. This naturally leads to discrete
energies for the radiation field in each mode: nk = 0,1,2, etc.
Both wave and particle perspectives are present in the

quantum view – the former in the picture of a stochastic elec-
tromagnetic field, and the latter in the language of particle
creation and annihilation. Combining these points of view,
one can think of the “photon” as a discrete excitation of a
set of modes {k} of the electromagnetic field in some cavity,
where the mode operators satisfy the boson commutation re-
lation: [âk, â†k ] = 1. Questions such as how to define the cavity,
and what normal modes to use, cannot be answered once and
for all, but depend on the particular physical setup in the lab-
oratory (see quote by Willis Lamb at the beginning). Guided
by this operational philosophy, we revisit the wave-particle
debate on the nature of light in the guise of the following
questions.

γ1 φ1 D0

D2

D1

D3

D4

BS1

BS2

φ2
γ2

BS3

Fig. 6. Quantum eraser – One of two atoms (solid circles)
emits two photons φi and γi. Interference is observed in φ by
scanning detector D0. Beamsplitters BS1-BS3 direct γ to four
detectors. A click in detectors D3 or D4 provides which-path
information on γ , preventing interference in φ . A click in de-
tectors D1 or D2 erases which-path information and restores
interference in φ . Figure adapted from Ref. [29].

What is a photon, and where is it?

In other words, in what manner (and to what extent) can we
regard the photon as a true ‘particle’ that is localized in space?
When first introduced, the photon was conceived of as a par-
ticulate carrier of discrete light energy, E = h̄ν , a concep-
tion guided by considerations of the interaction between radi-
ation and matter. From semiclassical arguments, we saw how
this discreteness was related to finite energy spacings in the
atom. Here, we pursue this line of reasoning further to inquire
whether a fully quantized theory of matter-radiation interac-
tion can lend a characteristic of spatial discreteness to the
photon when it interacts with a finite-sized atom. This line of
thinking derives from the quantum theory of photodetection36
(which, incidentally, also relies on the photoelectric effect).
Closely related to the issue of photon localization is the

(much debated) question of the existence of a photon wave
function ψ(r, t),2,7,8 analogous to that of an electron or neu-
trino (cf. Figure 8). The connection is that if such a wave
function exists, then we can interpret |ψ|2dV as the probabil-
ity of finding the photon in an infinitesimal volume element
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r1

r2

γ1

γ2

φ2

φ1 Dφ

Dγ

B

Fig. 7. Two-site downconversion interferometry – Two atoms
are located at r1 and r2, one of which emits two photons,
labeled φi and γi. DetectorsDφ andDγ measure the respective
photons. Inserting the beamstop B in the path of γ1 allows us
to infer (potentially, by checking Dγ ) which atom emitted the
φ photon. This potential which-path information is sufficient
to prevent the interference of φ1 and φ2 possibilities at Dφ .
Setup models the experiment of Ref. [34].

dV in space, and pursue the localization of the entire photon
to an arbitrarily small volume constrained only by the uncer-
tainty principle. Moreover, a ‘first-quantized theory’ of the
electromagnetic field would be interesting from the point of
view of discussing various quantum effects that result from
wave interference and entanglement. It would also allow us to
treat the mechanics of the photon on par with that of massive
particles, such as electrons and atoms, and enable a unified
treatment of matter-radiation interaction that supersedes the
semiclassical theory in rigor, but still avoids the language of
field quantization.
Concerning the issue of ‘where’ the photon is, one is re-

minded of an often asked question in introductory quantum
mechanics: “How can a single particle go through both slits
in a Young-type experiment?”
Richard Feynman answers this by saying “nobody knows,

and its best if you try not to think about it.” This is good ad-
vice if you have a picture of a single photon as a particle.
On the other hand if you think of the photon as nothing more
nor less than a single quantum excitation of the appropriate
normal mode, then things are not so mysterious, and in some
sense intuitively obvious.
What we have in mind (referring to Figure 1) is to consider

a large box having simple normal modes and to put two holes
in the box associated with the Young slits. If light is incident
on the slits, we will have on the far wall of the box an inter-
ference pattern characteristic of classical wave interference,
which we can describe as a superposition of normal modes.
Now we quantize these normal modes and find that a pho-
todetector on the far wall will indeed respond to the single
quantum excitation of a set of normal modes which are lo-
calized at the peaks of the interference pattern, and will not
respond when placed at the nodes. In this sense, the issue is

a non sequitur. The photon is common to the box and has no
independent identity in going through one hole or the other.
But to continue this discussion, let us ask what it is that

the photodetector responds to. As we will clarify below, this
is essentially what has come to be called the photon wave
function.2 Historical arguments have tended to disfavor the
existence of such a quantity. For example, in his book on
quantum mechanics,37 Hendrik Kramers asks whether “it is
possible to consider the Maxwell equations to be a kind of
Schrödinger equation for light particles.” His bias against this
view is based on the disparity in mathematical form of the two
types of equations (specifically, the number of time deriva-
tives in each). The former admits real solutions (sinνt and
cosνt) for the electric and magnetic waves, while the lat-
ter is restricted to complex wave functions (eiνt or e−iνt , but
not both). Another argument is mentioned by David Bohm in
his quantum theory book,38 where he argues that there is no
quantity for light equivalent to the electron probability den-
sity P(x) = |ψ(x)|2:

There is, strictly speaking, no function that repre-
sents the probability of finding a light quantum at a
given point. If we choose a region large compared
with a wavelength, we obtain approximately

P(x) ∼=
E 2(x)+H 2(x)
8πhν(x)

,

but if this region is defined too well, ν(x) has no
meaning.

Bohm goes on to argue that the continuity equation, which
relates the probability density and current density of an elec-
tron, cannot be written for light. That is, a precise statement
of the conservation of probability cannot be made for the pho-
ton. In what follows, we will see that we can partially over-
come the objections raised by Kramers and Bohm.
Let us develop the analogy with the electron a bit further.

Recall that the wave function of an electron in the coordi-
nate representation is given by ψ(r, t) = ⟨r|ψ⟩, where |r⟩ is
the position state corresponding to the exact localization of
the electron at the point r in space. Now the question is, can
we write something like this for the photon? The answer is,
strictly speaking, “no,” because there is no |r⟩ state for the
photon, or more accurately, there is no particle creation oper-
ator that creates a photon at an exact point in space. Loosely
speaking, even if there were, ⟨r′|r⟩ ̸= δ (r− r′) on the scale
of a photon wavelength. Nevertheless, we can still define the
detection of a photon to a precision limited only by the size
of the atom (or detector) absorbing it, which can in princi-
ple be much smaller than the wavelength. This gives precise,
operational meaning to the notion of “localizing” a photon in
space.
If we detect the photon by an absorption process, then the

interaction coupling the field and the detector is described by
the annihilation operator Ê+(r, t), defined in Eq. (6). Accord-
ing to Fermi’s Golden Rule, the matrix element of this opera-
tor between the initial and final states of the field determines
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Fig. 8. Comparison of physical theories of a photon and a neutrino. Eikonal physics describes both in particle terms, showing
the parallel between Fermat’s principle in optics and Hamilton’s principle in classical mechanics (L is the Lagrangian). The
Maxwell equations can be formulated in terms of photon wave functions, in the same form that the Dirac equations describe
the relativistic wave mechanics of the neutrino. Here, ΨΨΨ is a six-vector representing the wave functions associated with the
electric and magnetic fields, p = (h̄/i)∇ as usual, and s = (sx,sy,sz) are a set of 3×3 matrices that take the place of the Pauli
matrices σx,σy and σz. See Ref [2] for details. Finally, quantum field theory gives a unified description of both the photon and
the neutrino in terms of quantized field operators.

the transition probability. If there is only one photon initially
in the state |ψ⟩, then the relevant final state is the vacuum
state |0⟩. The probability density of detecting this photon at
position r and time t is thus proportional to2

G(1)
ψ = |⟨0|Ê+(r, t)|ψ⟩|2 = κ |ψE (r, t)|2. (7)

Here, κ is a dimensional constant such that |ψE |2 has units of
inverse volume. The quantity ψE (r, t) may thus be regarded
as a kind of ‘electric-field wave function’ for the photon, with
{⟨0|Ê+(r, t)}† = Ê−(r, t)|0⟩ playing the role of the position
state |r⟩. That is, by summing over infinitely many wave vec-
tors in Eq. (6), and appealing to Fourier’s theorem, Ê−(r, t)
can be interpreted as an operator that creates the photon at the
position r out of the vacuum. Of course, we have to be careful
not to take this interpretation too precisely.
It is interesting to calculate ψE (r, t) for the photon sponta-

neously emitted by an atom when it decays. Consider a two-
level atom located at r0, initially excited in level a and decay-
ing at a rate Γ to level b, as shown in Figure 2. The emitted
field state |ψ⟩ is a superposition of one-photon states |1k⟩,
summed over all modes k, written as

|ψ⟩ = ∑
k

gab,k e−ik·r0
(νk−ω)+ iΓ/2

|1k⟩, (8)

where ω is the atomic frequency, and gab,k is a coupling con-
stant that depends on the dipole moment between levels a
and b. The spectrum of the emitted field is approximately
Lorentzian, which corresponds in the time domain to an ex-
ponential decay of the excited atom. Calculating ψE (r, t) for
this state, we obtain

ψE (r, t) = K
sinη
r

θ(t− r/c) exp[−i(ω + iΓ/2)(t− r/c)],
(9)

where K is a normalization constant, r = |r− r0| is the ra-
dial distance from the atom, and η is the azimuthal angle
with respect to the atomic dipole moment. The step function
θ(t− r/c) is an indication that nothing will be detected until
the light from the atom reaches the detector, travelling at the
speed c. Once the detector starts seeing the pulse, the proba-
bility of detection |ψE |2 decays exponentially in time at the
rate Γ. The spatial profile of the pulse mimics the radiation
pattern of a classical dipole.
To what extent can we interpret Eq. (9) as a kind of wave

function for the emitted photon? It certainly has close paral-
lels with the Maxwell theory, since it agrees with what we
would write down for the electric field in the far zone of a
damped, radiating dipole. We can go even further, and in-
troduce vector wave functions ΨΨΨE and ΨΨΨH corresponding
to the electric and magnetic field vectors E and H respec-
tively, and show that these satisfy the Maxwell equations (see
Figure 8). This formalism provides the so-called “missing
link” between classical Maxwell electrodynamics and quan-
tum field theory.7 But we have to be careful in how far we
carry the analogy with mechanics. For example, there is no
real position operator r̂ for the photon in the wave-mechanical
limit, as there is for a first-quantized electron. Nevertheless,
the wave function ψE (r, t) does overcome the main objection
of Kramers (since it is complex) and partially overcomes that
of Bohm (photodetection events are indeed localized to dis-
tances smaller than a wavelength).
The real payoff of introducing a photon wave function

comes when we generalize this quantity to two or more pho-
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tons. A ‘two-photon wave function’ ΨE (r1, t1;r2, t2) may
be introduced along similar lines as above, and used to
treat problems in second-order interferometry (see Ref [2],
chap. 21). Entanglement between the two photons results in
an inseparability of the wave function: ΨE (r1, t1;r2, t2) ̸=
φE (r1, t1)γE (r2, t2), as in the example of the two-photon state
in Eq. (4). The novel interference effects associated with such
states may be explained in terms of this formalism.
Thus, the photon wave function concept is useful in com-

paring the interference of classical and quantum light, and
allows us to home in on the key distinction between the
two paradigms. In particular, through association with pho-
todetection amplitudes, multi-photon wave functions incor-
porate the phenomenology of quantum-correlated measure-
ment, which is key to explaining the physics of entangled
light.

Conclusion

What is a photon? In this article, we have strived to address
this concept in unambiguous terms, while remaining true to
its wonderfully multi-faceted nature. The story of our quest to
understand the character of light is a long one indeed, and par-
allels much of the progress of physical theory. Dual concep-
tions of light, as wave and particle, have co-existed since an-
tiquity. Quantum mechanics officially sanctions this duality,
and puts both concepts on an equal footing (to wit, the quan-
tum eraser). The quantum theory of light introduces vacuum
fluctuations into the radiation field, and endows field states
with quantum, many-particle correlations. Each of these de-
velopments provides us with fresh insight on the photon ques-
tion, and allows us to hone our perspective on the wave-
particle debate.
The particulate nature of the photon is evident in its ten-

dency to be absorbed and emitted by matter in discrete units,
leading to quantization of light energy. In the spatial domain,
the localization of photons by a photodetector makes it possi-
ble to define a ‘wave function’ for the photon, which affords
a ‘first-quantized’ view of the electromagnetic field by anal-
ogy to the quantum mechanics of material particles. Quantum
interference and entanglement are exemplified by one-photon
and two-photon wave functions, which facilitate comparisons
to (and clarify departures from) classical wave optics. More-
over, this interpretive formalism provides a bridge between
the two ancient, antithetical conceptions of light – its locality
as a particle, and its functionality as a wave.
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