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Compositions were chosen a t  65, 75, and 85% SO2. Per- 

tinent quenching data for the spodumene-mullite boundary are 
presented in Table VII. 

I t  has been again determined that the spodumene-mullite 
boundary approaches very closely to the silica-spodumene 
join but does not cross it as Hatch3 and Roy and Osborn4 had 
previously determined. 

(8) Significance of Data in Ceramic Technology 
( A )  Glasses and Glazes: The data of this paper, coupled 

with those of two previous papers,26 provide a guide for the 
fusibility, softening point, and thermal expansion to be ex- 
pected from ternary and quaternary compositions involving 
LizO, MgO, A1203, and SiOz. A glass in the eutectic area of 
the ternary system Li2O-Al203-SiO2 containing 15 LizO, 7 
A1203, and 78 SiOz has an expansion of 100 X cm. per cm. 

26 (a )  C E. Brackbill, H. A. McKinstry, and F. A.  Hummel, 
“Thermal Expansion of Some Glasses in the System Li?O-A1203- 
SiOz,” J .  A m .  Ceram. SOC., 34 [4] 107-109 (1951). 

(b)  F. A. Hummel and H. W. Reid, “Thermal Expansion of 
Some Glasses in the System MgO-A120~-SiO2,” ibid., 34 [ 101 319- 
21 (1951). 

per “C. in the range 25” to 500OC. A quaternary glass con- 
taining 6 LizO, 4.5 MgO, 4.5 A1&, and 85 SiOa has an ex- 
pansion of 51 X in the range 25’ to 400°C. and softens a t  
550°C. in the interferometer. 

Many fusible compositions can be found with the aid of 
Figs. 7 and 8 and Tables I and V. Glasses with low thermal 
expansion and relatively low softening and liquidus tem- 
peratures involve compositions containing 85y0 SO, or more. 

( B )  Crystalline Ceramic Bodies of the p-Spodumene, 0- 
Eucryptite, and Clinoenstatite Types: Since the solid solubility 
of MgO in p-Li20 .A1,O3.4Si0z and p-Li20 .AI2O3. 2Si02 was 
found to range from relatively low to negligible, only minor 
variations in the thermal-expansion behavior of these crystals 
would be expected due to the addition of magnesia. Similarly, 
the effect of Liz0 on the properties of cordierite bodies could 
be explained on the basis of a mixture of a t  least two phases, 
since the cordierite field terminates rather abruptly in the 
quaternary system and but little solid solution is evident. 

The data on the transformations of MgSiOy may be useful in 
the interpretation of the behavior of high-frequency clinoen- 
statite bodies, since more information is available on the in- 
version rates of the polymorphs in the presence of a glassy 
medium. 

The Emissivity of Transparent Materials 
by ROBERT GARDON 

Mellon Institute of Industrial Research, Pittsburgh, Pennsylvania 

The emission of thermal radiation by transparent 
materials is reviewed from first principles and is 
compared with the more familiar emission of 
radiation by opaque surfaces. The comparison 
leads to an expression for volume emissive power, 
which is an important concept for discussions of 
radiative effects in glass. The present treat- 
ment differs from that of McMahon in that it takes 
account of the diffuse character of radiation. As 
a result, it also constitutes a simple proof of the 
often overlooked fact that the radiant flux within 
a transparent radiator exceeds that emitted into air 
by a factor approximately equal to the square of 
the refractive index. Using these concepts, the 
spectral emissivities of isothermal transparent 
sheets are expressed in terms of their thickness 
and the optical properties of their materials. 
The results are illustrated by a discussion of the 
total hemispherical emissivities of sheets of 
window glass at various temperatures. The 
commonly accepted value of about 0.91 is the 
same for all glasses having a refractive index of 
1.5. However, it applies only for sheets above a 
certain minimum thickness. For window glass 
this ranges from 3/16 in. at 200OC. to as much 
as 8 in. at 1000°C. At 1000°C. a sheet 3/16 in. 
thick has an emissivity of only 0.59. The applica- 
tion of results to calculations of the radiative cool- 

ing of transparent sheets is briefly indicated. 

I. Introduction 
HE EMISSION of radiation by transparent materials is a 
subject of fundamental importance to the glass industry. T To cite but two examples, the application of optical py- 

rometry to the measurement of glass temperatures depends on 
it, and the rate of cooling of glassware is in no small part de- 
termined by it. Yet the subject has, until recently, received 
relatively little attention. 

In the more familiar problems of heat transfer by radiation 
one deals with radiant exchanges between opaque bodies that 
are separated by transparent media.* Insofar as one is 
aware of the latter, they are usually very transparent, as for 
example air, or in the form of relatively thin sheets such as 
windows; and one is more concerned with the radiation they 
transmit than with any radiation they may emit. One tends, 
almost, to forget that they are not perfectly transparent. Yet, 
insofar as they are not perfectly transparent, they absorb 
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radiation and must therefore also be capable of emitting 
radiation. Thus moderately transparent media differ from 
most opaque ones in degree rather than in kind. 

As a result of greater familiarity with opaque materials, the 
emission of radiation is commonly regarded as a surface 
phenomenon. In fact, however-and this is fundamental to 
the treatment of transparent radiators-it is a bulk phenome- 
non. One purpose of this paper is to elaborate the parallel- 
ism between this view and the familiar description of opaque- 
solid radiation in terms of a surface emissive power given by 
the Stefan-Boltzmann law and an angular distribution approx- 
imated by Lambert’s cosine law. A study of the emission of 
radiation by moderately transparent materials would thus 
seem to be a worth-while endeavor not only because of the 
technical importance of the subject, but also because it may 
lead to a better understanding of the emission of radiation in 
general. 

( I )  Review of Related Work 
A valuable contribution to the study of transparent ma- 

terials was made by McMahon,’ who derived an equation 
analogous to Kirchhoff’s law, which in its usual form applies 
to opaque materials only. McMahon’s generalized form of 
this law relates the spectral emissivity of a plane-parallel sheet 
of a moderately transparent material to its reflectivity and 
transmissivity, also taking into account multiple internal re- 
flections within the sheet. In the course of his derivation 
McMahon introduced the concept of the spectral voluwe 
emissive power of materials. This is a parameter of fundamen- 
tal importance in discussing the emission of radiation within 
transparent bodies and will be shown to underlie a clearer 
understanding of the already familiar concept of the emissive 
power of opaque surfaces. 

Although McMahon’s final results are correct, his treat- 
ment is incomplete in two respects. One is that i t  is con- 
cerned with unidirectional radiation only. As such it was 
satisfactory for his purposes, which were to correlate emission 
and transmission measurements made on collimated beams 
normal to sheets of glass.2 However, in problems of radiant 
heat transfer, it is the hemispherical rather than the‘ normal 
emissivity that is of interest. Secondly, the treatment fails 
to show the dependence of volume emissive power on the re- 
fractive index of the material. 

Kellett3 discussed the mechanism by which thermal radia- 
tion between successive layers of a moderately transparent 
material can augment heat transfer by true thermal conduc- 
tion. His analysis of this “radiative conduction” was based 
on McMahon’s expression for volume emissive power. It 
was later shown to be incomplete, partly because this ex- 
ln-ession was itself incomplete and partly because Kellett’s 
treatment, like McMahon’s, was restricted to unidirectional 
radiation. Czerny and Genze14 have, since then, shown the 
importance of treating radiant heat transfer as a three-di- 
mensional phenomenon even where there is a net transfer of 
energy in one dimension only. Kellett subsequently amended 
his earlier paper without, however, giving a proof of his correc- 

H. 0. McMahon, “T!:rmal Radiation from Partially Trans- 
parent Reflecting Bodies, J .  Opt .  Soc. Amer., 40,376-80 (1950).  

H .  0. MSMahon, “Thermal Radiation Characteristics of 
Some Glasses, 

( a )  B. S .  Kellett, “Steady Flow of Heat Through Hot Glass,” 
J .  Opt .  Soc. Amer., 42 [ 5 ]  339-43 (1952); Ceram. Abstr.,  1953, 
March, p. 41h. 

( b )  B .  S. Kellett, “Transmission of Radiation Through Class 
in Tank Furnaces,” J .  SOL. Glass Technol., 36 [169] 115-23T 
(1952) ; Ceram. Abstr., 1952, November, p:.201f. 

Marianus Czerny and Ludwig Genzel, “Uber die Eindringtiefe 
raumlich diffuser Strahlung in Glas” (Depth to Which Diffuse 
Radiation Penetrates Glass), Glastech. Ber., 25 [ 5 ]  134-39 (1952) ; 
Ceram. Abstr.,  1953, July, p. 117h. 

J .  A m .  Ceram. Soc., 34 [ 3 ]  91-96 (1951).  

t i ~ n . ~  Indeed, McMahon’s treatment of volume emissive 
power appears, to date, to have remained unamended. Geff - 
cken,6 who treated the same problem as Kellett, did so with- 
out employing the concept of volume emissive power. He 
proceeded from a statement that the rate of emission of radia- 
tion by a black-body radiator into a mass of glass is ?z2 times 
that given by the familiar Stefan-Boltzmann law, n being the 
refractive index of the glass. This may seem surprising, for, 
accustomed as one is to perceiving radiation in air, one has 
come to regard the Stefan-Boltzmann constant as something 
absolute. In fact, however, the dependence of the rate of 
emission on the refractive index of the medium surrounding 
the radiator was discussed by Drude7 as early as 1912. In 
spite of this, and for all its significant bearing on any discus- 
sion of radiant heat transfer in glass, it  does not seem to have 
been recognized by glass technologists in this country. 

To sum up, it is seen that the enquiry into what goes on 
within moderately transparent radiating media was not un- 
dertaken in any very systematic manner. McMahon and 
Kellett started from first principles but did not allow for the 
three-dimensional character of radiation and thus failed to 
note the importance of the refractive index. The German 
workers took account of both of these but, aiming directly for 
the radiative conductivity, by-passed a discussion of volume 
emissive power. 

(2) Object of This Paper 
Against this background, i t  is the purpose of this paper to 

treat the emission of radiation by transparent materials from 
first principles, thereby linking existing results and laying a 
foundation for further work. More specifically, the paper 
sets out to do three things: (I) to demonstrate anew, and 
from an engineer’s practical point of view, the influence of the 
refractive index on the rate of radiant emission, (2) to apply 
these findings to a discussion of the rates of emission from 
thin sheets of glass, and ( 3 )  to touch upon the radiative redis- 
tribution of energy within sheets of glass. 

II .  Determination of Volume Emissive Power 
The starting point of these considerations is the fact that a t  

elevated temperatures all matter radiates, regardless of its 
position in space. In other words, the emission of radiation 
is essentially a bulk phenomenon. That this is not more 
generally recognized is probably due to the fact that, in the 
more familiar case of opaque materials, none of the radiation 
originating in the interior of a body reaches its surface; and 
all the radiation that does leave the radiator must, by defini- 
tion, have originated at its surface. On the other hand, a 
part of the radiation originating in the interior of a moder- 
ately transparent material does reach the surface and cross 
into the medium surrounding the radiator. It is the entry of 
a radiant flux into the medium surrounding the radiator 
(usually air) that is commonly perceived as emission. This 
must be contrasted with what might be called the primary 
emission of radiation from elemental particles of matter, 
which goes on in the interior of bodies regardless of whether its 
effects reach the outside. 

The fact that some of the radiation emerging from the sur- 
face of a transparent body originates from its interior has 
some consequences that are immediately evident. For ex- 
ample, if a body of glass is cooling, the relatively low rate of 
primary emission from the cool surface zone may be aug- 

B. S. Kellett, correction to footnote 3 ( b ) ,  J .  SOC. Glass Tech- 
nol., 37 [178] 268 (1953).  

sWalter Geffcken, “Zur Fortleitung der Warme in Glas bei 
hohen Temperaturen, I,” (Transmission of Heat in Glass at 
High Temperatures, I), Glastech. Ber., 25 [12] 392-96 (1952); 
Ceram. Abstr., 1954, February, p. 31h. 

S. Hirzel, Leipzig, 
1912. 

P. Drude, Lehrbuch der Optik, p. 494. 
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Thus, using cylindri- small volume 6 V subtends an angle 6 ~ .  

cal polar coordinates, the elemental volume is 
6V = r 6~ 6 r  6x 

or, in terms of the coordinates x, ‘p, and 01 

250 

/ 
/ 

/ ’  

X 
I c 

& %d 

L .- a 

Fig. 1 .  Primary radiation reaching the surface of a semi-infinite 
solid. 

mented by:kadiation originating from the hotter interior, 
which makes the interpretation of readings of a radiation py- 
rometer somewhat of a problem. However, leaving tempera- 
ture gradients out of the picture for the present, we return 
to the basic fact that the emission of primary radiation is a 
bulk phenomenon, which is also temperature dependent. 

To give this concept quantitative expression, we define, as 
Mchfahon did, a spectral aolzime emissive power j,. This is a 
measure of the monochromatic power radiated a t  a given tem- 
perature by a unit volume of material into a unit solid angle of 
space. The reason for speaking of the spectral volume emis 
sive power is that, in general, the power of a material to 
radiate will differ for radiation of different wave lengths. 
The “per unit solid angle” is brought in as a remindcr that 
radiation is a diffuse process which, in an isotropic material 
such as glass, proceeds uniformly in all directions. 

( I )  Primary Radiation Within a Semi-Infinite Body of Trans- 
parent Material 
We proceed to use this concept to determine what radiation 

reaches the surface of an isothermd semi-infinite body of a 
transparent material fro’lz within. To illustrate the phvsical 
mechanisms involved, an outline of the mathematical treat- 
ment is given.* 

Consider a semi-infinite solid of a transparent material a t  
a uniform temperature T ,  a t  which its spectral absorption 
coefficient is yA cm.-l and its spectral volume emissive power 
isj ,  cal. per ~ m . ~  . sterad:sec:p. Referring to Fig. 1, con- 
sider further the primary radiation that reaches a small 
element 6s of the surface of the solid from various elements of 
volume, such as 6V,  in the interior of the solid. 

Consider 6 V to be part of a ring of radius 7 ,  radial thick- 
ness 6r, and axial thickness 6x. At the center of the ring the 

* .I list of symbols is given on p. 287 

sin N 6V = x2 ~. 6x 6 q  6a 
C O S ~  01 

Let 6w and 6Qi  represent the solid angles subtended. re- 
These are given by spectively, by 6s at 6 V and by 6 V at 6s. 

6w = 6s (COS N ) / L 2  = 6s (cos3 a)/x2 

and 
6Cii = r 6 p  6 v  (cos a)/L2 = r 6‘p 6 r  (c0s3 N ) / x ~  

At a wave length A ,  and per unit interval of wave length, the 
element of volume 6V emits radiation a t  the (spectral) rate 

j, 6 k’ [ca!./sterad. 'set. . p ]  

of which 

j, 6 V 6w 

is directed toward the small element of area 6s. The spectral 
rate of arrival of energy a t  bS from 6 V is less than j ,  6 I’6w be- 
cause of the absorption of radiation along the path of length 
L = x/cos 01. 

[cal./sec. . p ]  

It is given by 

6 ~ ,  = j, 6 v 6w c - ~ x ~ ‘ ~ ~ ~  a [eal./se’c. j,p] 

The corresponding elemental contribution to the spectral 
flux WAi reaching the surface from inside the solid is 

6WAi = 6Q,/6S [c:Ll./cm.2.sec. .p1 

and, as this arrives a t  6.” within a solid angle 6Qi ,  the corres- 
ponding elemental spectral intensitv is 

61,= = 6Q,/6S 662i [cal./cm.2.sterad..sec..p/ 

The present interest is in the internal radiant intensity and 
Substituting for flux a t  the surface of a semi-infinite solid. 

6Q,. 6 S ,  and 6Q,, these are obtained as 

and 

= r j , / y ,  [cal./cm.2.sec..p1 (4) 

Equation (2) shows that the intensity of primary radiation 
reaching the surface is proportional to the cosine of the angle 
of incidence. This is Lambert’s cosine law, which is usually 
regarded as empirical. Here i t  has been proved as a neces- 
sary consequence of the assumptions made, namely, that the 
radiating body is of great thickness, that elemental volumes 
radiate uniformly in all directions, and that the attenuation 
of radiation obeys the well-known exponential relation. 

It might be noted that the foregoing expressions are in terms 
of the as yet undetermined spectral volume emissive power.j,. 

(2) Radiation Emitted by a Semi-Infinite Body of Trans- 
parent Material 
The radiation reaching the surface from the interior is not 

that emitted, for a t  the surface refraction and internal re- 
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r G l a s s  I Air 

Fig. 2. Polar diagram of radiant intensities a t  the surface of  a semi- 
infinite transparent radiator. 

flection take place. The intensity relationships involved in 
these processes are briefly treated in Appendix I (see p. 285). 

It is a polar 
diagram of the intensities of radiation on both sides of the sur- 
face of a semi-infinite radiator of a transparent material. On 
the left side are shown the beams of primary radiation con- 
verging upon a point in the surface from the interior of the ra- 
diator. As was shown above, their intensities vary with the 
cosines of their angles of incidence, which makes their polar 
diagram a circle. At the surface 
the laws of reflection and refraction take over. The radia- 
tion incident on the surface a t  angles greater than the criti- 
cal angle, aeTlt, is totally internally reflected. Of the remain- 
der some is internally reflected, but the bulk is transmitted to 
emerge as the “emitted radiation ” Upon emergence, the 
transmitted part of the radiation, which was originally con- 
tained in a cone of semi-angle equal to the critical angle, is 
spread out to fill the entire half-space above the surface. Its 
intensity, which is power per unit solid angle, is correspond- 
ingly reduced. 

Figure 2 illustrates the results one obtains. 

One half of this is shown. 

It is shown to be 

j ,  7 f  

Y~ n2 I,@ = - ~ 
cos p 

In the foregoing expression /3 is the angle of refraction or 
“emission,” as given by Snell’s law 

sin f3 = n sin 01 

and 7’ is the directional transmissivity of the surface, i.e. the 
fraction of the energy of the incident primary beam that is re- 
fracted across the surface.* Thus, while the intensity of 
primary radiation reaching the surface from within a semi- 
infinite solid (I,,,) was seen to obey Lambert’s cosine law 
exactly, the angular variation of I x p ,  the intensity of emitted 
radiation, deviates from the simple cosine law to the extent of 
the variation of T’ with angle of emission 0. This variation, 
for a glass having a refractive index of 1.5, is shown in polar 
coordinates in the right half of Fig. 3. T’ is seen to be practi- 
cally constant for angles of emission up to about 55” and to de- 
crease progressively more rapidly a t  larger values of /3. Re- 
ferring again to equation ( 5 ) ,  this means that for the greater 
part of the radiation emitted by a semi-infinite transparent 
radiator the radiant intensity in any direction is proportional 
to the cosine of the angle of emission, and that departures from 

* The prime is used to indicate that 7‘  is a function of 01 and 
therefore also of 6. 

Directional Ernissivity of 
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Fig. 3. 
the emissivities of various opaque materials. 

Angular variation of the transmissivity of a glass-air surface and 
Left half of figure after 

Umur, e t  al., footnote 8(b). 

this simple cosine relation become significant only a t  relatively 
large values of the angle of emission. In  this respect the ra- 
diation from semi-infinite transparent radiators resembles that 
from opaque nonmetallic radiators, for which similar depar- 
tures from Lambert’s cosine law have long been known (see 
left half of Fig. 3 and references to Ribaud and Brun and to 
Umur et ~ 1 . ~ ) .  

This similarity suggests that the radiant flux emitted 
across the surface of a semi-infinite transparent radiator may 
be identical with that usually regarded as being emitted b y  
the surface of an opaque radiator. A close parallel might in- 
deed be expected, for the present considerations, although 
concerned with transparent materials, have thus far been 
restricted to infinitely thick bodies, which are effectively 01)”- 
que in that no radiation can pass through them. (The trans- 
missivity T’ is that of the surface, i.e. the complement of sur- 
face reflectivity, and not the transmissivity of the entire 
body.) It will be shown that, in the present context, the term 
“infinite thickness” is a relative one, meaning a thickness so 
great that additional thickness does not noticeably affect the 
property under study. Thus the magnitude of the “infinite 
thickness” required to make a slab of a transparent material 
opaque depends on the degree of transparency of the ma- 
terial; it  will be large if the material is very transparent, 
small if the material is only moderately transparent or rela- 
tively opaque, and vanishingly small if the material is in- 
trinsically opaque. Thus the observed applicability to 
opaque radiators of the “modified cosine law” (equation 
( 5 ) ) ,  which was derived for semi-infinite transparent radia- 
tors only, may be explained by the hypothesis that radiation 
conditions obtaining in a great thickness of a transparent 
material are reproduced in relatively opaque materials on a 
very much smaller scale of depth. 

(3) 
This hypothesis is next used to express the postulated vol- 

ume emissive power in terms of the familiar emissive power of 
surfaces. It is done (see Appendix 11) by equating the calcu- 

Determination of Volume Emissive Power 

(a)  G. Ribaud and E. Brun, Transmission de la Chaleur: 
Vol. I, Le Rayonnement Thermique, p. 81. J. et R. Sennac, 
Paris, 1948. 168 pp, 

( b )  A. Umur, G. V. Parmelee, and L. F. Sehutrum, “Measure- 
ment of Angular Emissivity,” Heating, Piping, A i r  Condition- 
ing, 26, 13540 (1954). 
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lated hemispherical emissive power of a semi-infinite trans- 
parent radiator, expressed in terms of an as yet unknown vol- 
ume emissive power, and the hemispherical emissive power of 
a comparable opaque radiator, known in terms of the familiar 
Planck or Stefan-Boltzmann equations. The comparison 
leads to the result 

In  thisj, is the sought spectral volume emissive power, y, the 
spectral absorption coefficient, and n the refractive index of 
the transparent material. W,, is the hemispherical spectral 
emissive power of an ideal (or black-body) radiator, which can 
be computed by Planck’s law (see equation (17), Appendix 

This result is similar to McMahon’s, except for the term 
11). 

n2,  which did not appear in his treatment. 

(4) Note on the Emission of Radiation 
A simple physical illustration of whence this term arises can 

be obtained by referring again to Fig. 2. This had been used 
to illustrate the fact that the radiation emitted was originally 
(i.e. inside the radiator) contained within a cone of semi- 
angle merit. It can be shown that the primary radiant flux 
within that cone is only the (l/n2)th part of the total reaching 
the surface. The radiation emitted cannot, therefore, ex- 
ceed the ( l/n2)th part of the total primary radiation reaching 
the surface from within. This result and the finding that the 
true volume emissive power is n2 times that deduced by Mc- 
Mahon cancel one another insofar as the emitted radiation is 
concerned, which explains why McMahon’s final results are 
correct, his results for volume emissive power notwithstand- 
ing. 

Actually, some small part even of the radiation originally 
contained within the cone of semi-angle %,it is also internally 
reflected, so that the radiant energy emitted, or the hemi- 
spherical flux leaving the radiator, must be slightly less 
than the (l/n2)th part of that just within the surface. An 
external observer, aware only of the radiation emitted, can- 
not sense this higher flux just within the radiator. Never- 
theless, the fact that this flux is greater than one might have 
expected can play an important role in the radiative redis- 
tribution of energy within the radiator, as was brought out 
by the amendment5 of Kellett’s earlier papers. 

The foregoing considerations also show that if the radiator 
were permitted to emit not into air, which has a refractive 
index of 1.0, but into a medium of refractive index m (m less 
than n), the fraction of the primary radiant flux WAjm emit- 
ted would change from a little less than (l /n)2 to a little less 
than (m/n)’. In other words, the rate of emission, as dis- 
tinct from the rate of primary emission, increases approxi- 
mately with the square of the refractive index of the medium 
into which emission is taking place.* It follows that the walls 
of a glass tank in contact with glass will emit more energy 
into the glass than one would expect from the Stefan-Boltz- 
mann law, which applies for emission into air only. 

This, essentially, is one of the premises from which Geffckene 
started his treatment of radiative conduction in glass, which 
prompted the amendment of Kellett’s earlier work.3 

What we have done, thus far, is therefore little more than to 
have proved anew and discussed from an engineer’s or glass 
technologist’s point of view a fact well known to classical 
physicists, namely, that the rate of emission of radiation de- 
pends on the refractive index of the medium into which emis- 
sion is taking place. This proof and discussion are presented 

* The greatest possible fractiou of Whim t ha t  can be emitted 
is, of course, unity; and, for values of m greater than n, the 
emitted radiant flux is approximately equal to Whim. This corre- 
sponds to  emission into an optically denser medium, and changes 
of m/n (with m > n) affect only the angular distribution of the 
emitted radiation. 

in the hope that they may be of help to those who, like the 
writer, may have been somewhat baffled on learning of this 
fact, exemplified in Kellett’s more recent note5 by the sub- 
stitution of u d  for the familiar constant u of the Stefan- 
Boltzmann equation (see equation (19) of Appendix 11). 
More specifically, the foregoing has served to establish an 
expression for volume emissive power which it is proposed 
to use in subsequent work. 

111. The Emissivity of Transparent Sheets 
With the volume emissive power known, we can turn to the 

emission of radiation by transparent sheets. As before, the 
primary radiation reaching either surface of a sheet is found 
first. The emitted radiation is then found by allowing for 
reflection and refraction effects a t  the two surfaces. The 
treatment differs from the preceding one principally in that 
multiple internal reflection must now be taken into account. 
Since present considerations are confined to isothermal sheets, 
results can conveniently be expressed in terms of emissivities. 

(I) 
The analysis illustrated by Fig. 1 is repeated, but equations 

(1) and (3) are now integrated between the limits x = 0 and 
x = X ,  X being the thickness of the sheet. The results ob- 
tained, after substitution forj, by equation (6) ,  are 

Primary Radiation in Transparent Sheets 

( 7 )  

and 

whiX = n 2 W B ~  [ a  - e?xx(  1 - y,X) - ( ?,X) 2Ei( - y,X)] 

( 8) 
where the exponential-integral Ei( - p )  is defined by 

It can be obtained from published  table^.^ 
Equation (7) shows that, unlike primary radiation reaching 

the surface of a semi-infinite radiator, primary radiation reach- 
ing the surface of a transparent radiator of finite thickness 
does not obey Lambert’s cosine law, the deviation being due to 
the term e-”O.x/cOs a. Equation (8) will not be used further. 
It is brought in only to introduce the exponential-integral 
function, which is to problems involving diffuse radiation what 
the simple exponential function e-” is to problems involving 
unidirectional radiation. Thanks to the availability of 
tables, the treatment of diffuse radiation within one medium 
presents no difficulties. Only when one wishes to consider 
the reflection and refraction of diffuse radiation does it be- 
come necessary to change from algebra to more tedious graphi- 
cal or numerical computations. 

(2) 
Multiple internal reflection of the diffuse primary radiation 

reaching the surface of a plane-parallel transparent radiator is 
treated in Appendix 111. It is shown that the radiation emitted 
from either side of the sheet is made up of the transmitted 
portion of the primary radiation directed toward that side 
and of the transmitted portion of radiation multiply reflected 
between the two surfaces. 

Comparing the spectral intensities I A ~ X  and spectral flux 
Wxex emitted by an isothermal transparent sheet of thick- 
ness X with the corresponding intensities and hemispherical 
emissive power of a black-body radiator a t  the same tempera- 
ture, we define two emissivities. These are the directional 
spectral emissivity and the hemispherical spectral emis- 

Radiation Emitted by Transparent Sheets 

(a )  “Tables of Sine, Cosine, and Exponential Integrals,” 

Dover 
Federal Works Agency, W.P.A., New York, 1940. 

Publications, New York, 1943. 
(b) .  E.. Jahnke and F. Emde, Tables of Functions. 
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Fig. 4. Angular variation of the spectral emissivities of transparent sheets 
(n = 1.5). 

sivity eAX, given by equations (23) and (24) of Appendix 
111. 

Note that these results are in terms of a dimensionless 
product 7,X. This is the product of the actual thickness X 
of the sheet and of the absorption coefficient y x  of the material, 
which is generally wave-length dependent. Since for any 
given material at any given wave length one value of yr ap- 
plies, 7,X might be termed a “dimensionless thickness.” 

Figure 4 shows the angular variation of spectral emis- 
sivities for sheets having various dimensionless thicknesses. 
This directional spectral emissivity is the ratio that the 
intensity of radiation in any direction bears to the intensity of 
black-body radiation in the same direction. Since black-body 
radiation obeys Lambert’s cosine law, i.e. is uniformly bright 
in all directions, Fig. 4 can also be regarded as a plot of the 
angular variation of the relative spectral “brightness” of 
radiating sheets. The outer curve refers to a radiating block 
of glass (n = 1.5) having an infinite dimensionless thickness. 
The normal emissivity of such a radiator is 0.96, and the 
emissivity is practically constant for angles of emission up to 
about 5 5 O ,  beyond which it decreases. As has already been 
noted in reference t o  Fig. 3, the curve is very similar to the 
corresponding curves for most opaque nonmetallic materials. 
The other curves refer to successively thinner sheets of glass, 
the brightness of which decreases with decreasing thickness. 
The angular distribution of brightness also changes; as might 
be expected, the thinner sheets radiate relatively more 
strongly in oblique directions, as shown by the fact that the 
curves arc progressively flatter. In contrast with thicker 
sheets and most opaque nonmetallic materials, these thinner 
sheets have mean, or hemispherical, emissivities greater than 
the corresponding normal emissivities. 

Figure 5 shows hemispherical spectral emissivity as a func- 
tion of dimensionless thickness. For a material having a 
given refractive index, the hemispherical spectral emissivity 
depends only on the magnitude of the product y,X and is 
practically constant for values of this greater than about 3.5.  
This gives a more definite meaning to the term “infinite 
thickness.” Thus one. can regard as “infinite” any trans- 
parent sheet for which 7,X is greater than 3.5,  regardless of 
whether this is so because of the great thickness of the sheet or 
the high absorption coefficient of its material for the radiation 
in question. 

Since the refractive index of most glasses does not change 
significantly over the wave-length region of interest, the hem- 
ispherical emissivity of massive bodies of glass is seen to be 
independent of wave length. I t  is 0.91 for glasses having a 
refractive index of 1.5. 

(3) Total Hemispherical Emissivity of Isothermal Sheets of 
Glass 
In practical calculations of heat transfer one must know the 

total hemispherical emissivity, i.e. the emissivity taking into 

Dimenslonlcss Thickness: y1 X 

Fig. 5. Hemispherical spectral emissivity of transporentysheets. 

12, I I I I 1 I 1 I 

Wove -length. A [ p ]  

Fig. 6. Emissivity of sheets of window gloss at 1 OOO°C. 

account radiation in all directions and of all wave lengths 
Calculation of this involves forming a mean of the hemi- 
spherical spectral emissivities, weighted according to the corre- 
sponding emissive powers of black-body radiation. 

Figure 6 illustrates the steps in a graphical computation of 
the total hemispherical emissivities of sheets of window glass 
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Fig. 7. Total hemispheric01 emissivity of window gloss as a function of 
shee t  thickness and  temperature. 

of various thicknesses and a t  a temperature of 1000°C. 
Figure 6 ( A )  shows the spectral variation of absorption coeffi- 
cients, obtained from Neuroth.lo(”) Figure 0: (B)  shows the 
corresponding variation of the hemispherical spectral emis- 
sivities of sheets having various thicknesses, these emissivities 
being obtained from Fig. 5 .  Figure ci (C) shows spectral 
emissive powers of black-body radiation a t  1000°C., multiplied 
by the corresponding spectral emissivities of the various 
sheets. Areas under the curves of Fig. G (C) are a measure of 
the energy radiated at 1000°C. by sheets of window glass 
having various thicknesses. 

A series of calculations following the foregoing procedure 
has led to values of the total hemispherical emissivity of 
sheets of window glass ranging in thickness from 1 mm. up 
and a t  temperatures between 20’ and 1300OC. The results 
are exhibited in Fig. T. While this applies to window 
glass only, similar curves can readily be obtained for any 
glass the spectral absorption coefficients of which are known. 
Data on absorption coefficients of various glasses a t  elevated 
temperatures have appeared in some recent German pa 
pers.lO* l1 

Window glass is typical of many other glasses in that its 
spectral absorption coefficients increase from relatively low 
values a t  wave lengths below about 2.i ,!.I to much higher 
values a t  longer wave lengths. Its absorption coefficients 
also vary with temperature, but the “step” in the vicinity of 
2.T p appears to remain quite marked (see Fig. 6 ( A ) ) .  As 
temperature changes, the corresponding spectral distribution 
of black-body radiation also changes, and a t  high tempera- 
tures progressively greater fractions of the radiant energy are 
emitted at shorter wave lengths. It fo l lo~s  that the character 
of the radiation emitted by a sheet of glass at any temperature 
is largely determined by the position of the spectral energy dis- 
tribution curve of a black-body radiator a t  that temperature 
relative to the step in  the absorption coefficient vs. wave- 

1’) (a )  Xorbert Seuroth, “Der Einfluss der Temperatur auf die 
spektrale Absorption von Glasern im Ultraroten, I” (Effect of 
Temperature on Spectral ;\bsorption of Glasses in the Infrared, 
I ) ,  Glastech. Ber., 25 [8] 242-49 (1952); Ceram. Abstr.,  1953, 
.ipriI, p. 57e. 

( b )  Norbert Neuroth, “Der Einfluss der Temperatur auf die 
spektrale Absorption von Glasern im Ultraroten, 11” (Effect of 
Temperature on Spectral .%bsorption of Glasses in the Infrared, 
II), Glastech. Ber., 26 [3] 66-69 (1953); Ceram. Abstr., 1954, 
March, p. 47f. 

1’ Ludwig Genzel, “Messung der Ultrarot-Absorption von 
Glas zwischen 20” und 1360°C.” (Measurement of Infrared 
Absorption of Glass Between 20” and 1360°C.), Glastech. Ber., 
24 [3] 5 5 6 3  (1951); Ceram. Abstr . ,  1953, March, p. 40g. 
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length curve. As far as the thickness of the sheet is con- 
cerned, i t  is evident from Fig. 5 that this affects (spectral) 
emissivities only if y,X is less than about 3.5. 

With these two criteria in mind, three ranges of thickness 
may be distinguished. (1) Sheets for which y,X is greater 
than 3.3 a t  all wave lengths, both below and above 2.7 p,  are 
effectively “infinitely thick.” Their total hemispherical 
emissivity depends on their refractive index only and is 0.91 
for glasses having a refractive index of 1.5. (2) For very 
thin sheets the product r,X is less than 3.5 even for the high 
values of y, obtaining a t  wave lengths longer than 2.7 p. 

The emissivity of sheets in this range of thicknesses is very 
sensitive to  changes in thickness. (Some uncertainty is at- 
tached to the computed emissivities of these very thin sheets 
because of their dependence on higher values of yx, of which 
no measurements are available and which therefore had to 
be assumed to make these calculations possible.) (3) For 
sheets having intermediate thicknesses yxX is greater than 
3.5 (and therefore is constant a t  0.91) for radiation of 
relatively long wave lengths, and less than 3.5 in the wave- 
length region below 2 . i  p,  so that the spectral emissivities a t  
these lower wave lengths are still markedly thickness depend- 
ent. The net result is that the total hemispherical emissivity 
E , ~  is also thickness dependent, although to a lesser extent 
than for thinner sheets. 

To illustrate some of these generalizations. quantitatively, 
consider the emissivities of window glass a t  200° and a t  
1000°C., as shown in Fig. 7. At 200OC. more than 99% of 
the energy of black-body radiation is emitted a t  wave lengths 
longer than 2.7 ,!.I, to  which window glass is relatively opaque. 
Consequently the total hemispherical emissivity of window 
glass at this temperature is quite high even for very thin 
sheets. I t  is 0.73 for a sheet only 0.1 cm. thick, and the limit- 
ing value of 0.91 obtains for a sheet only about 0.5 cm. thick. 
A t  1000°C. more than 35% of the energy of black-body radia- 
tion is emitted in the wave-length region below 2.7 f i .  Thus, 
while for wave lengths beyond 2.7 ,!.I a sheet 0.5 cm. thick again 
has a spectral hemispherical emissivity of 0.91 (cf. Fig. 6 ( B ) ) ,  
its total hemispherical emissivity is only 0.59. In fact, the total 
hemispherical emissivity remains discernibly less than 0.91 
for sheets up to about 20 cm. thick. It may also be noted 
from Fig. 6 (C) that, although the peak intensity of emission 
by a thick body of glass always occurs a t  the same wave 
length as the peak intensity of black-body radiation, the same 
does not hold for the peak (or peaks) in the emission spectrum 
of thinner sheets. 

IV. Radiation Within Transparent Sheets 
LVe have now discussed that part of the primary and multi- 

ple internally reflected radiation that has been “emitted” 
across the surfaces of a transparent radiating sheet. I n  con- 
clusion we might touch upon radiant fluxes within the sheet 
and thereby draw together the present considerations and 
treatments of radiative conduction in transparent materi- 
a l ~ . ~ ,  5 ~ 6  These treatments have been restricted to the inner 
regions of massive bodies, in which the effects of the surface 
are not felt. They are not, therefore, applicable to thin 
sheets in which surface effects, such as emission, irradiation, 
and multiple internal reflection, can pIay a dominant part. 
No simple expression for radiative conduction can be ob- 
tained for these. However, by following the radiation re- 
maining in the sheet in the same manner as was done for the 
radiation escaping from the sheet after each internal reflection 
and traversal, a complete picture of internal heat transfer 
conditions can be obtained. 

A few simple generalizations can readily be made. In the 
unsteady state, e.g. during the cooling of a transparent sheet, 
one can consider two aspects of the internal radiation. One 
is to ask from what levels within the transparent sheet the 
emitted radiation originates. Evidently, the more any layer 
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06 Briefly t o  illustrate this effect, Fig. 8 is 
_p presented without going into its proof or de- 
N tails. It shows the dimensionless rates of 

radiative cooling (due to  the emission of mono- 
chromatic radiation) at various levels within 
initially isothermal transparent sheets, which 
are suddenly exposed to  a cold environment. 
As is t o  be expected, thinner sheets cool faster 
than thicker sheets. The interesting point to  
note is that  initially isothermal transparent 

i: Q2 sheets begin t o  cool simultaneously through- 
n out their thickness. This is in contrast with 

initially isothermal opaque sheets, which, in g 01 the  first instant of cooling, can lose heat from 
E their surfaces only, not from their interior 

regions. This means that  the more diather- 
manous a glass is, the  smaller will be the 
temperature gradients created in a sheet of it 
by a given heat-treating operation. Figure 

function of position and sheet thickness. 8 is conveniently simple to  illustrate a 
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Fig. 8. Instantaneous rate of radiative cooling of an isothermal transparent sheet as a 

contributes to  the emitted radiation, i.e. the  nearer it is to  the 
surface, the faster that  layer will tend to  cool. Secondly, 
partial reabsorption of the internal radiant flux, especially of 
that due t o  multiple internal reflections, will tend to  equalize 
temperatures within the sheet. Under certain circumstances 
this process can be far more effective than ordinary thermal 
conduction. Thus, even where the external heat transfer 
between a sheet and its surroundings occurs principally by 
some mechanism other than radiation, the internal radiative 
redistribution of energy may have t o  be taken into account. 
In this connection i t  must be remembered that  just within the 
transparent radiator the primary radiant flux is roughly n2 
times that  emitted, and the total flux is yet higher-thanks 
to  multiple internal reflection. 

point. However,- the isothermal conditions 
for which i t  applies are somewhat restric- 
tive. To give such a plot greater practical 

interest, more work must be done on the  computation of local 
cooling rates within transparent sheets in which temperature 
gradients exist. This work is in progress, and i t  is hoped that  
it may shed light on the very interesting heat-transfer pheno- 
mena that  are involved in such practical operations as anneal- 
ing and tempering. 
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APPENDICES 

Appendix 1. Intensity Relations for Reflection 
and Refraction 

In Fig. 9 a narrow beam from the interior o f  a transparent 
radiator is shown to be partly reflected and partly refracted a t  the 
surface, where it passes through an area 6s. The internal angle 
o f  incidence of the beam is CY, its spectral intensity is Ix,, and it is 
contained within the small solid angle 6R;. 

662i = sin 01 601 6p 

6 p  being the “angular width” of the beam, measured perpendicu- 
larly to its plane of incidence. After refraction the beam emerges 
into a vacuum (or into air) a t  an angle of refraction p. Its spec- 
tral intensity is then I h p ,  and it is contained within the small 
solid angle 6Q,, 

6a, = sin p 6p 6p 

If 7’  is the transmissivity of the surface for this beam, i.e., the 
fraction of the energy of the incident beam that is refracted across 
the surface, then, by an  energy balance, 

Glass Air 
n=1.5 I n=I.O 

%F---- 

Fig. 9. Reflection and refraction of a divergent beam. 

The angles of incidence and refraction, a and p, are related by 
Snell’s law 

sin (3 = n sin CY 

Hence so that 
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The refracted intensity therefore becomes 

7’ cos p 
n C O S ~  

I = I,, -2 __ v (9) 

If the incident beam is one that originated in the interior of a 
semi-infinite transparent radiator, its intensity I,,, will be 
given by equation (2), and the intensity of the corresponding re- 
fracted beam will be 

(10) 

This is equation ( 5 )  of the main part of the paper. 
The variation of 7’  with a (or p )  is considered next. 
Fresnel’s equations relate the amplitudes of the electric 

waves of the incident, reflected, and refracted beams. The 
energy associated with these beams is proportional to the squares 
of their respective amplitudes and also depends on the medium. 
For simplicity, one starts by comparing the energy of the inci- 
dent and reflected beams, which are the two beams within the 
same medium. For these, Fresnel’s equations lead to the fol- 
lowing expressions for the internal reflectivity of the surface of a 
nonmetallic solid : 

for radiation polarized perpendicularly to plane of incidence, 

and 

for radiation polarized parallel to plane of incidence. 

effective reflectivity p’ is given by 
As the radiation emitted within the glass is not polarized, the 

1 
P’ = 2 ( P ’ l  + P‘II) 

Finally, as no absorption occurs in the infinitesimally thin surface 
region in which reflection takes place, the corresponding trans- 
missivity of the surface is 

7’ = 1 - p’ (13) 

The transmissivity 7 ‘  is thus seen to depend on the refractive 
index of the material and on the angle of incidence of the radia- 
tion (see Fig. 3).  7’  is independent of wave length for any ma- 
terial the refractive index of which may be regarded as constant, 
i.e., for a material of zero dispersion. I t  should also be noted 
that the foregoing expression for 7’  applies only for initially un- 
polarized radiation. 

Appendix 11. Determination of Volume Emissive Power 

Insofar as Wxi, represents the spectral hemispherical flux 
reaching the surface from within a semi-infinite transparent radia- 
tor, let Wh,, represent the spectral hemispherical flux refracted 
across the surface, i.e. the flux “emitted.” I t  is given by 

where 

(15) 
r r / 2  

T *  = 2 j 0  T’  sin p cos p dp 

Similarity of the angular distributions of radiation emitted, 
respectively, by an opaque radiator and by a semi-infinite trans- 
parent radiator has suggested the hypothesis that these two 
radiators may be identical. Hence the emissive power Wx,, 
should be equal to that of an opaque radiator, WRh. The latter 

is given by 

wR, = ‘RRX WBX 

Vol. 39, No. 8 

where W,, is the emissive power of an ideal (or black-body) radia- 
tor and E ~ ,  is the hemispherical spectral emissitivity of the real 
radiator. 

By Kirchhoff’s law, the hemispherical spectral ernissitivity of an 
opaque body is given by 

E R A  = 1 - p 

where p is the hemispherical reflectivity of its surface, the bar 
indicating that this applies to (diffuse) radiation reaching the 
surface from the optically less dense medium. If this diffuse 
radiation obeys Lambert’s cosine law, one obtains 

p = 2 /01/’ p‘ sin E cos E da 

where 5 is now the angle of incidence in vacuum (or air) and p‘ 
is the angle-of-incidence-dependent reflectivity. For a non- 
metallic and nonscattering material, p‘  is given by equations 
(11) and (12), with d taking the place of B and 13 taking the 
place of a. Comparing this with equations (15) and (13)’ i t  is 
seen that 

i = 1 - 7 *  

I t  follows that 

‘RX = T *  

Hence, if 

then 

j ,  = yXn2WBX/?r  (~al./cm.~~~terad:sec:p] (16) 

This is the desired expression for spectral volume emissive 
power, equation (6) of the main part of the paper. 

The spectral emissive power of a black-body radiator, W B ~ ,  
can be calculated by Planck’s law 

in which T = temperature of radiator [“I(.]. 
c1 = 8.94 X l o3  cal..p4/cm.2.sec. 
cy = 14.39 X lo3 p.OK. 

Unlike the index of refraction, the absorption coefficient 7,  

varies markedly with wave length, so that one cannot readily 
speak of a “gray” absorber. If one could, one could also speak 
of a total volume emissive powerj, which would be related to the 
total emissive power of a black-body radiator in the same manner 
as the spectral volume emissive power j x  is related to the spectral 
emissive power of a black body. 

j = yn2WB/rr [cal./cm.3~sterdd.~sec.] (18) 

where W ,  is the total emissive power of a black-body radiator, 
given by  the Stefan-Boltzmann law 

Thus, j would be given by 

W, = 0T4 [~al . /cm.~.sec.]  (19) 

in which u is the Stefan-Boltzmann constant, 1.355 X lo-’* 
cal./cm.Z.st’c.. OK4. 

Appendix 111. Multiple Internal Reflection of Radiation 
Emitted Within a Plane-Parallel Sheet 

Initially unpolarized radiation becomes partly polarized upon 
reflection, the degree of polarization depending on the angle of 
incidence. Upon multiple reflection between parallel surfaces, 
the degree of polarization becomes more marked. Thus, al- 
though an initially unpolarized beam within a plane-parallel 
sheet will have the same angle of incidence at each of many inter- 
nal reflections, its reflectance p‘  and transmittance T ‘  will vary 
with its changing state of polarization. However, p ’ l ,  pfl i ,  7‘1, 
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and 1’11 are constants for any given angle of incidence a. It will 
be convenient, therefore, to consider separately beams of radia- 
tion polarized, respectively, perpendicularly and parallel to the 
plane of incidence. 

Consider a monochromatic beam of perpendicularly polarized 
primary radiation that reaches one face of a plane-parallel sheet 
a t  an angle of incidence 01 and with an intensity I i a l .  A fraction 
7’1 of its energy is transmitted across the surface, and a fraction 
p ’ l  is reflected. The transmitted fraction emerges at an angle 
of “emission” 8, and its intensity is given by equation (9) as 

The internally reflected beam, having an initial intensity I ~ ~ l p ’ l ,  
is attenuated as it travels a distance X sec a before being again 
partially reflected at the opposite face. I t  is further attenuated 
as it crosses the sheet again to reach the first surface for a second 
time. Its intensity is then 

and of this a fraction 7’1 is again transmitted and p ‘ l  reflected. 
The intensity of the transmitted part of the twice-reflected beam 
is (again by equation (9)) 

The internally reflected part continues to traverse the sheet until 
it has become completely attenuated, partly by absorption and 
partly by transmission across the two surfaces. 

Thus, of the perpendicularly polarized primary radiation 
initially directed toward one face, an amount of intensity 

emerges across that face. At the same time, of the primary radia- 
tion initially directed toward the opposite face, an amount of 
intensity 

also emerges across the first face. 
intensity from either face is 

Thus, the total emergent 

X T ‘ I  cosp 
n2 cosa 

IhOl = - ~ 

A similar expression is obtained for the primary radiation 
polarized parallel to the plane of incidence. Since the primary 
radiation in 3 sheet of an isotropic material, such as glass, is not 
polarized, the intensities I h a ~  and Thall are equal to one another 
and to 1/2Zhax,  which is given (for isothermal sheets) by equation 

Hence the intensity of radiation emitted by an isothermal 
(7). 

sheet of thickness X is given by 

(20) 

where 

.;I + -7,X sec a] (21) 

From this, integrating over the hemisphere, the emergent radiant 
flux is obtained as 

T .L T’ = ;[ 
1 - (p’l)e-YXX sec Q 1 - (P‘l,)e 

The corresponding directional and hemispherical spectral 
emissivities of an isothermal sheet of thickness X are given by 

and 

This integral is best evaluated graphically. 
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Specific heat 
2.718 (base of natural logarithms) 
Intensity of radiation 
Spectral intensity of radiation 
Spectral volume emissive power 
Length of path of radiation 
Refractive index of medium into 

Refractive index in general, of 

Spectral rate of flow of radiant 

which emission takes place 

radiator in particular 

energy 
Cylindrical coordinate 
Surface area 
Temperature 
Volume 
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emissive power 
Spectral radiant flux, or hemi- 

spherical spectral emissive 
power 

Thickness of transparent sheet 
Position coordinate 
Angle of incidence (within radia- 

Angle of refraction or emission 
Spectral absorption coefficient 
Hemispherical emissivity; E ‘ ,  di- 

rectional emissivity 
Wave length 
Mean reflectivity of a surface for 

diffuse radiation; p ’ ,  direc- 
tional reflectivity 

1.355 X 

tor) 

(In Fig. 8) density 
Stefan-Boltzmann constant, 

Mean transmissivity of a surface 
for diffuse radiation; 7‘ .  direc- 
tional transmissivity 

Effective directional transmis- 
sivity (see equation (21)) 

Angle in cylindrical coordinate 
system 

Solid angle subtended by the re- 
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Solid angle subtended by the 
source of radiation a t  the re- 
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cm 

Cm-l 
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steradian 

steradian 

Subscripts 
Of a black-body (or ideal) radiator 
Refers to flux emitted 
Refers to  flux incident on inside of surface of radiator 
Of a real radiator 
Total, referring to radiation of all wave lengths 
Of a sheet of thickness X 
A t  angle of incidence a, or associated with incident beam 

(within radiator) 
A4t angle of refraction (emission) p, or associated with 

emitted beam 
Spectral, i.e. pertaining to radiation of wave length A; and, 

in the case of energetic quantities, referred to unit in- 
terval of wave length (see units of Z and Z,) 

Of a semi-infinite radiator 
For radiation polarized perpendicularly to plane of inci- 

For radiation polarized parallel to plane of incidence 
dence 


