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The definitions, the physical significances, the interrelationships, and the observability of
seven velocities of light are discussed. One of the seven, the centrovelocity, is a new velocity
which is introduced here. It is suggested that this velocity can be used for the description of the
transport of electromagnetic radiation since it does not have any of the short comings of the
standard definitions of the group velocity or the velocity of energy transport.

A. INTRODUCTION

The velocity of light is one of the most funda-
mental of all physical constants. At the present
time, while there are a number of excellent
reviews!™ of the experimental determination of the
veloeity of light, there is no study of the velocity
of light as a coneept in the literature. While there
is very little difference in the magnitude of the
velocities of light in weakly dispersive media there
exist a large class of modern problems where a
significant amount of dispersion is present and
there is a noticeable difference in the velocities.
These cases are due mainly to the development of
the laser and the multitude of new types of
propagation situations that have arisen, such as
the propagation of pulsesin an amplifying medium,
in a nonlinear medium, and others.

We will attempt to clarify the basic charac-
teristics or nature of the coneept of the velocity of
light. We will find, as is well known, there is more
than one velocity of light. We will attempt to
ascertain which of these are quantities which are
experimentally observable, what are their charac-
tersitics, and how are they interrelated. Thereby,
we hope to gain a deeper understanding of this
topic. In particular, we introduce a new definition
for a velocity of light which is a decided improve-
ment over some in current usage.

We will start with a detailed discussion of the
definitions and nature of the seven velocities of
light.

B. THE VELOCITIES OF LIGHT

Normally when one makes reference to ‘‘the
velocity of light” one is referring to the phase
velocity of plane waves of light in a vacuum.
However, there are times when one speaks of the
velocity of light, but does not refer to this. There
seems to be at least six velocities of light in

conventional use. To these six we will add one new
definition -of our own, i.e., the centrovelocity. In
this section we shall discuss the most precise
definitions we have been able to obtain or formu-
Iate for these velocities:

the phase velocity,

the velocity of energy transport,
. the group velocity,

the relativistic velocity constant,
the ratio of units velocity,

the signal velocity,

the centrovelocity.
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1. Phase Velocity

The first velocity associated with light or
electromagnetic fields which we shall discuss is the
well known phase velocity v,. Let us assume we
have a monoechromatic wave of the form

Y(r, 1)y =A(r) cos[wt—g(r)], (1

where ¢(r) is a real scalar funetion. The phase
veloeity is defined ag?

vp(r) =w/| Vg(r)|.

Its direction may be taken the same as Vg(r).
For a monchromatic plane wave the phase
velocity is given by

(2)

vp=w/k. (3)

Equation (3) is probably the most widely used
definition for phase velocity. However, Eq. (2) is
preferred beeause it holds for any monochromatic
field while Eq. (3) holds only for plane waves.

If one chooses a particular value of the phase for
3 monochromatic wave at some position and time,
the phase veloeity is the velocity with which this
constant value of the phase travels through space.
Thus, the phase velocity determines the phase of a
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monochromatic wave in space and time if the
phase is known at some position at a given time.
However, one should not assume that since the
phase of a monochromatic component of a wave
packet has had time to reach a given space-time
point, the field or any observable quantity has
arrived at that point. This is because there is no
observable physical quantity associated with the
phase of a light wave. Furthermore, we may have
the phase determined at a certain space point by
the phase velocity, but the amplitude of the wave
may be zero there. Thus the phase is actually not
defined at the point. Thus even though the phase
velocity implies a phase at a given point there need
not be a nonzero field at that point. We therefore
see that the phase velocity is not the velocity of an
observable physical object. For plane mono-
chromatic waves it gives the relationship between
w and k.

We wish to emphasize that the phase velocity of
light can not be directly measured by a time of
flight method. It must always be the result of a
calculation other than distance traveled divided
by the time of flight. By this we mean one eannot
observe a fixed value of the phase at point A and
time its propagation to point B. In the optical
range and above, there has been no direct,
accurate measurement of the phase velocity.

A phase velocity cannot be attributed to a wave
packet or to any wave execept a monochromatic
wave. Thig is due to the fact that any wave form
consisting of more than one monochromatic wave
does not have a unique frequency. However, some
physical realizable wave packets can be treated as
monochromatic waves to a very good approxima-
tion,

2. Velocity of Energy Transport

We now wish to consider the velocity of energy
transport or, as it is often called, the ray velocity.
In a loss-free region the velocity of energy trans-
port is defined agh—®

Ve= S/W) (4)

where S is the Poynting vector and W is the energy
density. There are some practical difficulties with
this definition. The relationship between the field
vectors and the energy flow or the energy density
is subject to a degree of arbitrariness.® If one
assumes that the energy flow is given by Poynting
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vector, it can be determined experimentally.
However, the energy density cannot be measured
experimentally. Therefore, there cannot be a direct
determination of v, by the experimental observa-
tion of 8 and W. However, the most serious
difficulty, from an experimentalist point of view,
with the above definition is that it does not define
when the energy has arrived. Therefore, one can-
not measure by a time of flight method or any
other method the velocity of energy transport as
defined by Eq. (4).

We conelude that the definition of ray velocity
as given by Eq. (4) does not correspond to the
propagation of a real observable physical quantity.
However, this should not be taken to mean that
the coneept of velocity of energy transport is not
useful.

3. Group Velocity
(a) Standard Definition

Almost any wave packet may be written as a
Fourier integral such as

Ylir, i) = fm A (t) cos[wt—g, (1) Jdw. (5)
0

We have for the definition of the group velocity
for such a wave packet that®

v5(1) = | V(8g.(r) /6w [5) [T (6)

where @ is the mean frequency of the signal. We
note that & is not uniquely defined. We may use a
range of values for & without effecting the results of
this seetion. We may treat the group veloeity as a
scalar or let it have the direction of V(8¢./6w).
For the case when g,(r) =k-r this reduces to

V= 6w /6k |5. (7)

By its nature, the group velocity is a mathe-
matical entity which may not have any real
physical significance associated with it. There is no
physical particle, mass, energy, or signal which
necessarily travels at the group veloeity. This is
clearly the case in a region of anomalous dispersion
as well as for a region of amplification. In a region
of absorption », may become negative, zero, or
infinite.® In fact Eq. (6) may no longer yield a
unique value for v, To see this one need only
consider the case where one wave packet enters,
and after passing a distance in the medium, there
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are several packets separated in space at a given
instance. In this case one cannot define @ group
veloeity by the use of Eq. (6).

A wave form which has more than one maximum
at a given time may have one, two, or more
maxima at some later time. There is no law of
conservation of the number of such maxima.
Furthermore, we cannot associate with this
maximum any unique physical entity which we can
use as a tag and thereby follow its progress.

The reported demonstrations’® of the equality
of the group velocity and the velocity of energy
transport have been limited to special cases, the
most important restriction being that the medium
is loss free. We note that this restiction is equiva-
lent to the abandonment of the principle of
causality.®

We wish to show that the standard definition of
the group velocity fails to describe the motion of
the peak of an arbitrary pulse in a region of
anomalous dispersion. According to the standard
definition the group velocity in a region of
anomalous dispersion ean exceed ¢, go to positive
infinity, negative infinity, and assume a large
range of negative values.® Needless to say, the
behavior of the group velocity in this region is not
consistent with what one would consider reason-
able.

In the derivation of the expression for the group
veloeity found in modern texts, the position of the
maximum of the pulse is given by

t=60,(r) /dw |5 (8)
If we have
go (1) =nwz/c, (9)
it follows that
t=c1(dnw/dw) 52 (10)

The standard definition of the group velocity
fails whenever Eq. (10) yields a value for the time
position of the maximum such that

i—z/ec<0 (11)
or

(8105/360) [a— 1 <0 (12)

since we know the field is zero for all #s that
satisfies Eiq. (11).190

Even though the standard definition of the
group velocity implies that the peak of the wave
group has arrived, it has not. The standard group
velocity fails because in the derivation an as-
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sumption was made that in general is not true in a
region of anomalous dispersion. That is it was
assumed that

k(w) —k(a)~(0w—a)[8k(w) /ow]|s.

This approximation is not in general valid in a
region where there is a resonance. This is why the
standard expression for the group veloeity does not
deseribe the motion of the maximum of the pulse
in a region where one has gain or absorption.

A general expression for the group velocity, i.e.,
the velocity of the maximum of the intensity of the
pulse, in a region of anomalous dispersion is not
readily apparent. The conventional one is clearly
unacceptable. Furthermore, the group velocity of
a pulse is a funetion of the gain or absorption, the
depth in the medium, and the pulse shape.! Thus,
the group wvelocity is a much more complex
quantity than it is normally assumed to be.

(13)

(b) A New Definition

Because of the distortion due to dispersion, a
new definition has recently been proposed for the
group veloeity.”2 It was proposed that the group
velocity be the veloeity of motion of the temporal
center of gravity of the amplitude of the wave
packet. Under this definition the group velocity
could be written as

V= ’V(LZiiA(T,t)]dt/LZiA(r,i)\dt)

(14)

~1

For a quasimonochromatic pulse, this definition
reduces to that of Eq. (6). This definition has the
advantage that for any case there exists a unigue
temporal center of gravity as long as the integrals
converge. This is true even in the case where the
original pulse splits into several parts. Iurther-
more, the pulse need not be quasimonochromatic
as the previous definition required.

For the experimentalist, an additional amount
of work may be required to determine the tem-
poral center of gravity of the amplitude, but there
is seemingly no serious difficulty.

4. The Relativistic Velocity Constant

For the four-dimensional space—time world of
Minkowski we have the invariant quantity®®

dst= da?+ dy?+dz2— cde. (15)
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The constant ¢; which has the dimensions of
velocity is the quantity we call the relativistic
veloeity constant.*% With this notation, the
Lorentz transformation would be written in the
usual form but with ¢ replaced by ¢ Therefore,
one would be led to the customary expression for
the transformation of velocities, except again we
must replace ¢ by a1 Therefore, if the veloeity is e
in one frame, it ig ¢; in all frames. Also, by use of
the standard arguments® ¢; is the maximum
velocity for a signal and the least upper limit for
the velocity of particles with nonzero rest mass.
Historically, ¢ was taken as “the” velocity of
light. However, one can conceive of a space—time
geometry which is described by Eq. (15), but for
which ¢ is not the veloeity of propagation of a light
signal, although it is very nearly equal to it.

5. The Ratio of Units Velocity

One may write two of Maxwell’s equations in
the following form
VXH—¢, D= (4r/c,)], (18)
VXE+B/¢,=0. {(17)
We have used Gaussian units. The constant ¢, is
equal to the ratio of the unit of charge in the
electrostatic units to that of the unit of charge in
the electromagnetic system of units. This quantity
is what we have called the ratio of unit velocity.
This is not a veloeity in the physical sense, but
merely a universal physical constant which has the
dimensions of velocity.

Tor free space where the solution of Maxwell’s
equations yield solutions which are monochromatic
plane waves, the phase velocity for any frequency
component is equal to the ratio of units velocity.

Historically, it was observed that Maxwell’s
equations for the vacuum were invariant under a
Lorentzian transformation. For this demonstra-
tion the velocity term in Maxwell’s equations and
the velocity term in the Lorentzian transforma-
tion were taken as identical. Therefore, historically
it was assumed that

Cr= Ci1.

While there is seemingly no evidence which
casts doubt upon this identity, it is of interest to
see if these quantities can be independently
determined. Both ¢, and ¢ ean in principle be
determined experimentally; no direct experi-
mental determination of ¢ has been made to date.

LIGHT
6. The Signal Velocity

To define a signal velocity one must first define
a signal. Tf a change occurs in one body and it
influences or produces a change in another body
after the lapse of a certain interval of time, we say
there exists an interaction between these bodies.
Interactions traveling from one particle to another
are often called “signals.”’ If the interaction is
electromagnetic in nature then we would have a
light signal. Because we wish to say the signal has a
beginning we require that it be localized in time.
Therefore, a signal is normally® defined as an
isolated wave form of some arbitrary shape.
Nothing should precede the signal which can be
used to detect the coming of the signal. Thus the
wave form must be zero before it starts. This
definition corresponds in many respects to the
concept of “cause” as used by Hilgevoord.®

Operationally, one may define the signal
velocity in the following manner: The time at
which the first nonzero part of the signal passes
point A is noted. Likewise it is noted at some point
B further along the path of propagation. The
velocity is determined in the normal manner by
dividing the distance from 4 to B by the elasped
time,

To observe the first nonzero part of a signal one
would need an infinitely sensitive detector. Since
we have assumed that the field is zero for a finite
interval, the signal must contain arbitrarily large
frequencies. Therefore, our ideal detector would
have to have the same infinite sensitivity for all
frequencies. In practice we do not have detectors
like this. A very widely used device is a photo-
detector. If the signal one wishes to observe is
reasonably monochromatic, this device will give a
good approximation of the pulse shape of the
signal. However, if the sensitivity of the detector
varies significantly over the spectral width of the
incident signal, the detector will not give a good
deseription of the incident signal.

Since an ideal detector is not available, it has
become customary to choose some other eriterion
than the one given above to determine when a
signal has arrived. Basically, these criteria fall
into two types. The first has the form that the
signal is taken to have arrived when it has reached
1/a of its maximum amplitude where a>1. The
second type is that the signal has arrived when the
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stationary portion of the signal is equal in ampli-
tude to the transient portion. Both of these
criteria can lead to difficulties. When there is no
dispersion present either of the above criteria
yields consistent results. However, they both fail
in a region of gain or absorption.

Let us consider the results of using the first
criterion when dispersion alters the shape of the
pulse significantly. Let us assume we have a sym-
metrical pulse entering a dispersive medium. The
maximum of this pulse can be shifted forward or
backward. Therefore, the signal velocity of these
two cases will be different. The amount of differ-
ence will depend upon the value of o« chosen.
Clearly this is undesirable.

Possibly the most important objection to this
criterion is that one must see the entire pulse
before he can decide when it has arrived. Con-
sidering the fact that there are media which have
gain it is possible to be able to deteet the arrival
of a pulse a significant time before this criterion
says it has arrived.

If one uses a very large value of « the arrival of
the signal may be indicated by the precursors.
Thus the signal would be said to have arrived long
before the main body of the pulse had arrived.

To avoid this difficulty the second criterion was
introduced. The difficulty with the second
criterion is that in some cases the stationary por-
tion of the signal is always smaller than the
transient portion.® Thus, if one can see the
transient portion, and this criterion implies one
can, the signal never arrives by this criterion even
though we can see part of it, i.e., the transient
part. Finally, if the incident frequency is in a
region of anomalous dispersion, it is very difficult
if not impossible to distinguish between the
transient and stationary portions. Thus, this
criterion fails,

The difficulty of arriving at a workable defini-
tion for the signal velocity is that a pulse of radia-
tion is not a point, i.e., the motion of the pulse
cannot be equated to the motion of a point associ-
ated with the pulse.

Let us reconsider the definition of a signal. Let
us suppose that the wave form is zero for a finite
interval before the signal is nonzero. To have the
field zero for a finite interval the signal must
contain arbitrarily large frequencies. The physical
interpretation of these high frequency components
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is awkward. However, if we relax our demands that
the wave form be precisely zero to that the
resultant amplitude be smaller than some value §,
we need not have arbitrarily high frequencies. In a
given case the value of & will be set by the detec-
tion equipment used, the background noise, etc.

This leads us to the following eriterion for
determining the arrival of a signal: When one can
detect an intensity greater than § the signal is said
to have arrived. It is believed that this criterion
does not lead to the difficulties of the other criteria
for macroscopic cases.

So far the discussion has been concerned only
with macroscopic signals, that is, signals large
enough so that we may sample them at two differ-
ent points extracting a small portion of the total
energy each time. Under this definition a macro-
scopiesignal can consistof a single photon or many.
The case where a single photon constituted a signal
would be when the frequency was very great, such
as for v rays. In any case the energy extracted in
the measuring process must be very small. For
microseopic signals in the optical range there is
seemingly no way of defermining experimentally
the signal velocity.

Finally, we would like to point out that when-
ever the light field satisfies the equation

Vi, — [1*(w) /¢ Wu=0

it can be shown? that the signal velocity is less
than or equal to the maximum phase velocity of
any frequency present in the signal. This result
restricts the signal veloeity to ¢ or less in free space.
However, in a region of gain or absorption this
result does not restrict the signal velocity to values
less than c.

(18)

7. The Centrovelocity

We would like to offer a new definition for a
velocity of light which has some unique advan-
tages. We offer the following definition

ve= ‘ v(f_w B (x, i)di/f:o B, t)dt)

where E(r,t) is the real amplitude of the micro-
scopic electric field of the electromagnetic radia-
tion field. The ratio of the two integrals yields the
temporal center of gravity of the intensity. We see

-1

H

(19)
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that this velocity describes the motion of the
center of gravity of the intensity and thereby the
motion of the center of gravity of the energy
associated with the radiation field. Thus we have a
velocity analogous to the center of mass veloeity of
dynamies. The centrovelocity describes the flow
of the center of gravity of the pulse or pulsesin a
manner similar to how the motion of the center of
mass is given by the center of mass velocity in
classical dynamies.

In general, one may define for a given direction
of propagation, a centrovelocity for the two states
of polarization, Thus, one can define a centro-
velocity for each of the two orthogonal planes of
polarization or for the two senses of circular
polarized light. In general, the different states of
polarization can have different centrovelocities.

Equation (19) reduces to Eq. (6) for a quasi-
monochromatic pulse. However, unlike the group
velocity, the centrovelocity is not restricted to a
quasimonochromatic pulse or to a situation which
one has always only a single pulse. Also, while it
may or may not be always equal to the velogity of
energy transport as given by Eq. (4), it can be
experimentally determined in all cases. It is defined
such that one can use a time of flight method to
meagsure it. Also being the velocity of the center of
gravity of the energy it tells at least part of the
story of the flow of the energy. We would like to
point out that the centroveloeity is well behaved
in a region of anomalous dispersion while the group
velocity is not.

Therefore, we see that the centrovelocity can be
used to characterize the propagation of a pulse of
radiation in all cases regardless of the dispersion
present. It also vields an experimentally observable
quantity which describes in part the flow of the
energy associated with the pulse. The use of the
centrovelocity in lieu of the group velocity and the
velocity of energy transport would bring more
order and simplification into this subject. There-
fore, we believe the centrovelocity is a useful
concept.

C. CONCLUSIONS

We have now completed our analysis of the
velocities of light. We have introduced a new
velocity of light which we feel could be used in
lieu of the normal group velocity and the velocity
of energy transport. This new definition has
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several advantages: It yields a unique value
regardless of the dispersion present; its behavior
in a region of absorption or gain is not erratic as
the normally defined group velocity is; it elimi-
nates the difficult problem of trying to derive a
general relationship between the group veloeity
and the velocity of energy transport; since it is
always measurable, the lack of measurability that
troubled the conventional definition of v, does not
cause difficulty here.

It was found that one can measure experi-
mentally the phase velocity, the group velocity,
the centrovelocity, the relativistic velocity con-
stant, and the ratio of units velocity. However,
the signal velocity and the wveloeity of energy
transport, when the standard definition is used,
cannot be measured. However, if the centrovelocity
is adopted for the description of the transport of
energy, there is a measurable velocity which
characterizes the flow of electromagnetic radiation
energy.
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