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Preface

The present work is based on our two previous books published in Polish and enti-
tled (in English translation): Thermodynamics for chemists, physicists and engineers
[6] and Thermodynamics by exercises [7]. The first one, besides the part devoted to
the fundamentals of phenomenological thermodynamics and its application to phase
transitions and chemical reactions, contains also an introduction to statistical ther-
modynamics written by Alina Ciach. The second book is a collection of exercises
on thermodynamics together with their solutions, which correspond to the mate-
rial presented in [6]. The motivation for writing of these books was the lecture on
thermodynamics with the elements of statistical mechanics, given by us at the Col-
lege of Science, which was a part of the physical chemistry course for the 2nd year
undergraduate students. Presently the College of Science forms the department of
mathematics and science at the University of Cardinal Stefan Wyszyński in War-
saw, but originally it was established due to the initiative of a few research institutes
of the Polish Academy of Sciences, including the Institute of Physical Chemistry
where we are employed, and still benefits from their scientific and research poten-
tial. Because of large diversity of research carried out in the institutes of the Polish
Academy of Sciences, the studies in the College of Science are of interdisciplinary
character. Therefore the course of thermodynamics differs from traditional courses
of this subject at the physics or chemistry departments. In spite of many excellent
textbooks in this field it was difficult to find one, at rather an elementary level, whose
scope would correspond to the material lectured by us. This fact inclined us to write
a textbook adapted to our needs. However, in the course of writing, we decided that
if we extended somewhat the scope of the book, it could also be useful for the Ph.D.
students in our institute, who after the second year of studies are obliged to pass
an examination on physical chemistry, which is roughly at the level of P.W. Atkins’
book [1].

The present book is not simply a compilation of [6] and [7], since we have intro-
duced many significant changes and improvements. Moreover, as we did not want
the book to grow in size too much, we decided to limit its scope to phenomeno-
logical thermodynamics. To facilitate its use, we have highlighted in the text the
postulates and laws of thermodynamics, as well as the most important definitions
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viii Preface

and conclusions. Mathematical digressions are included in the main text, instead
of appendices, as we think that the formalism used in thermodynamics should be
treated as its integral part. We pay special attention to the compatibility of defini-
tions, terms, units and notation used in our book with the recommendations of the
International Union of Pure and Applied Chemistry (IUPAC) [4].

The book is divided into three parts. At the end of each chapter, there are ex-
ercises whose solutions are given at the end of the book. The first part, consisting
of five chapters, contains the postulates and laws of phenomenological thermody-
namics together with examples of their application. In Chaps. 2 and 3, we introduce
and discuss the basic concepts and quantities, such as the equilibrium state, param-
eters and functions of state, thermodynamic process, pressure, temperature, internal
energy, heat and chemical potential, relying mainly on the reader intuition. Writ-
ing Chaps. 4 and 5, we were inspired with Callen’s book [3]. Chapter 4 is mainly
devoted to entropy and the second law of thermodynamics and to the conclusions
following from that law. In Chap. 5, we discuss the thermodynamic potentials and
natural variables, and also the conditions of intrinsic stability for a pure substance.
Less advanced readers can skip the last point.

The second part is devoted to application of thermodynamics to phase transitions
in pure substances (Chap. 6) and in mixtures (Chaps. 8 and 9); Chap. 7 is an intro-
duction to thermodynamics of multicomponent systems. In Chap. 6, we give general
classification of phase transitions and a few examples of first order and continuous
transitions. In the rest of the book, however, we restrict ourselves to first order transi-
tions. The concept of ideal mixture is introduced in Sect. 7.5. Less advanced readers
can skip Sects. 7.2 and 7.6. The discussion of phase transitions in mixtures is limited
to the case of two-component systems. In Chap. 8, we discuss the phenomena that
can be explained by the model of ideal mixture. Non ideal mixtures are considered
in Chap. 9. In this case, we study the simplest extension of the ideal mixture model
called the simple solution. To understand the whole material presented in this chap-
ter the reader who skipped Sects. 7.2 and 7.6 should return to them. However, less
advanced students can skip the formal part of Chap. 9 and concentrate on the phase
diagrams presented.

In part three, we consider thermodynamic systems in which chemical reactions
occur. Chapter 10 concerns reactions between electrically neutral compounds. The
law of mass action, which follows from the condition of chemical equilibrium, is
derived for a mixture of ideal gases. Therefore the material presented in this chapter
should be understood also by less advanced students. Chapter 11 concerns electro-
chemical systems, in which chemical reactions occur between ions. Our main aim
was to show that due to a chemical reaction a system can perform work other than
the mechanical one, which in the framework of thermodynamics can be explained
by means of a reversible cell. This chapter is mainly for more advanced graduate
students.

We know from our own experience that for the second year students the concepts
of the differential and differential form are rather difficult. Since these concepts are
crucial for the whole course of thermodynamics, we have tried to explain them in
a simple way without going into mathematical details. The second crucial mathe-
matical concept, which is used to introduce the thermodynamic potentials, is the



Preface ix

Legendre transformation. Obviously one can define enthalpy or the Helmholtz or
Gibbs free energy without any reference to that concept. On the other hand, we
think that it is easier to understand properly the meaning of natural variables of a
thermodynamic potential in terms of the Legendre transformation, which was shown
in an elegant way by Callen [3].

The exercises together with solutions are to help the readers to evaluate their
understanding of the material learned. We believe that our book can be useful both
for the students of physics, especially for those who want to extend their knowledge
in the direction of physical chemistry, and for the students of chemistry who can
treat it as a part of the physical chemistry course. Also students of some engineering
departments or biology may use it.

Although the subject of our book is phenomenological thermodynamics, in a few
places we refer to statistical mechanics. To the readers who wish to learn more about
this important branch of science we recommend the classical books [8] and [14].
From among other books on thermodynamics, physical chemistry and chemistry
used by us, we recommend references [9], [15], [13], [1] and [11], and for advanced
readers also [5], [10] and [12]. References [16] and [2] can serve as an introduction
to the field of phase transitions and critical phenomena.

Robert Hołyst
Andrzej Poniewierski

Warsaw, Poland
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Part I
Foundations of Thermodynamics



Chapter 1
Historical Introduction

Thermodynamics used to be, above all, a science about heat. Therefore, qualitative
and quantitative studies of phenomena related to emanation or absorption of heat
determined the historical development of this branch of science. Seemingly no rela-
tion exists between thermodynamics and chemistry, geology, mathematics, biology
or material sciences. However, if no such relation existed, nowadays thermodynam-
ics would probably be a forgotten branch of science. In the second half of the 19th
century, the relation between the second law of thermodynamics and spontaneous
chemical reactions was discovered, which led, for instance, to the efficient synthesis
of ammonia from nitrogen and hydrogen on an industrial scale. The synthesis of am-
monia on a mass scale provided a basis to production of artificial fertilizers, whose
application allowed to feed additional two billion people. Nowadays thermodynam-
ics goes far beyond the scope associated originally with its name. It has become a
practical science concerned with the states in which matter consisting of a very large
number of atoms or molecules can exist, which of these states are preferred in given
conditions and how they can be reached.

In everyday life, we use terms such as: warm, cold, hot, which are based on our
senses. The evidence of how illusive these feelings can be is a sensation of the “heat”
experienced both by someone who gets burnt by a hot pot at a temperature of 50 °C
and by someone who at a temperature of −50 °C touches a piece of metal with a
naked hand. This example is to realize only that various terms used rather freely in
colloquial language have precise meaning in thermodynamical terminology.

Nowadays we know that many phenomena in the domain of thermodynamics
can be relatively easily explained if they are looked at from a microscopic point of
view, which was not known to the creators of thermodynamics in the 18th and 19th
century, however. The atomic theory of matter developed only at the beginning of
the 20th century due to the theory of Brownian motion elaborated by Smoluchowski
and Einstein, Perrin’s experiment on sedimentation of colloids and Rutherford’s ex-
periment on scattering of the α particles on a thin golden foil.

It was already known in ancient times that the volume of air increases with tem-
perature, which was scrupulously used in temples to open doors after the ignition
of the holly fire. Nevertheless, only in 1592 was probably the first thermometer
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constructed by Galileo, who used the phenomenon of thermal expansion of air. His
thermometer had an arbitrary scale and measured a joint effect of temperature and
pressure. Then it was difficult to separate these two quantities since the barometer,
which is used to measure pressure, was constructed for the first time in 1643 by Tor-
ricelli, who was a student and follower of Galileo. In the first thermometers, which
were made about the same time as the Galileo thermometer, at first water and then
alcohol were used as a working substance placed in a thin capillary. Initially the cap-
illary was open, however, it was soon observed that due to evaporation the amount
of the working substance decreased. In order to eliminate this effect, closed capil-
laries were started to be used. At the beginning of the 18th century, Daniel Gabriel
Fahrenheit from Gdansk, known as the father of thermometry, invented the mer-
cury thermometer. He introduced a new scale of temperature, which is still in use
in some countries. Another temperature scale was introduced by Celsius, a Swedish
physicists and astronomer. Both scales are linear and the temperature of 100 de-
grees on the Celsius scale corresponds to 180 degrees on the Fahrenheit scale. The
temperature of 0 °F ≈ −18 °C was introduced in an arbitrary way. It was the low-
est temperature achieved by Fahrenheit in his laboratory and it corresponds to the
freezing point of an aqueous solution of sal-ammoniac (NH4Cl). The problem of
the establishment of a reliable temperature scale was partly solved only when it was
observed that melting of ice and boiling of water occur always at the same temper-
atures at atmospheric pressure. These two points were accepted as a basis of the
temperature scale in 1694. On the Celsius scale, the boiling point of water corre-
sponds to the temperature of 100 °C, and the melting point of ice corresponds to
0 °C.

One of the first problems encountered by the creators of thermodynamics was
to establish a relation between heat and temperature, which involved application
of two devices: the thermometer and calorimeter. The question was whether tem-
perature and heat are the same physical quantity. In the middle of the 18th century,
Joseph Black introduced the concept of heat capacity as a proportionality coefficient
between the amount of heat and temperature. This seemingly simple idea was sim-
ilar to that used by Newton in the case of force and acceleration. According to the
Black formula, a reading of the thermometer has a meaning of heat per unit mass.
Black discovered also the latent heat associated with boiling and freezing.

The emergence of a modern approach to chemistry, based on the invariability
of elements and conservation of mass and heat (caloric)1 in chemical reactions, re-
sulted in a new conceptual framework to be used in many chemical problems. These
laws were set forth by Lavoisier in 1789, a few years before his decapitation by the
French revolutionists. Nowadays we know that no separate law of heat conserva-
tion exists but a more general law of energy conservation, which at that time was
only at the stage of formation. Since in chemical reactions occurring in liquids or
solids a change in the volume of a system is small, it was not accidental that the the-
ory of caloric conservation worked quite well in those cases. However, the theory

1The concept of caloric, i.e., a weightless, invisible fluid that flows from hotter bodies to colder
bodies, was introduced by Lavoisier.
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failed completely in confrontation with experiments in which a great amount of hit
was given off due to large friction. For instance, such a phenomenon was observed
by count Rumford during the boring of gun-barrels. His discovery that mechanical
work can be converted into heat, and is actually an inexhaustible source of heat, was
not given a sympathetic reception at that time, because no new conservation law was
proposed instead of the caloric conservation.

James Watt—the inventor of the steam engine and a student of Joseph Black—
must have realized the possibility of conversion of work into heat and vice versa.
However, it was Sadi Carnot—a French engineer—who described this conversion in
terms of the energy conservation principle, in the case of an ideal heat engine. More-
over, Carnot showed that the engine efficiency, i.e., the ratio of the work done to the
heat supplied, is a universal quantity. It depends only on the ratio of the tempera-
ture of the heat reservoir and the temperature of the radiator, but it is independent
of the working substance used in the engine. Carnot used the concepts of caloric
and heat in his work. Later, caloric originated in the concept of entropy, whereas
the analysis of heat led to the energy conservation principle in the form of the first
law of thermodynamics. Both concepts were developed independently by Clausius
and Kelvin, and the mathematical formalism of differential forms was applied to the
Carnot work by Clapeyron.

The empirical definition of temperature given by Celsius and Fahrenheit was not
suitable for theoretical consideration of Carnot. In 1849, after Carnot’s death (1832),
William Thomson—the later Lord Kelvin—noticed that the observation made by
Carnot eliminated the dependence of the temperature scale on properties of the sub-
stance used in a thermometer or heat engine. Following Carnot, he noticed that the
efficiency of a heat engine does not depend on the working agent. This fact indicated
the existence of an absolute temperature scale, named later the Kelvin scale, which
is independent of the properties of any substance. Due to his discovery thermody-
namics went beyond the stage of description of empirical facts and entered upon the
path of search for fundamental laws of nature.

For a long time during the development of thermodynamics, work and heat were
considered separately from each other. Therefore, it is not surprising that the calorie
is still in use as a unit of heat, apart from the joule—a unit of work and energy. The
first experiments which allowed to convert the unit of heat into the unit of work were
carried out by Mayer and Joule in the middle of the 19th century. Thus, the route
to the formulation of the energy conservation principle, which is the essence of the
first law of thermodynamics, was relatively long. It originated from the conservation
of mechanical energy, i.e., the sum of the kinetic energy and potential energy, which
was formulated by Leibnitz at the end of the 17th century. The crowning achieve-
ment was the work published in 1847 by Helmholtz, who extended the range of
the energy conservation principle to all branches of physics. Due to his publication,
Helmholtz could leave the Prussian army, where he served as a doctor, to work out
the student grant received from the Prussian government. The army commanding
staff decided that such an outstanding man would render a service to the country
better if he worked at the university instead of army. In 1905, on the basis of the
energy conservation principle, Albert Einstein proposed mass–energy equivalence
and in 1932, Enrico Fermi postulated existence of the neutrino.



6 1 Historical Introduction

The second law of thermodynamics, as the absolute temperature scale, came into
existence in the middle of the 19th century. Thorough analysis of the Carnot engine
led to a new quantity in place of caloric,2 which was given the name entropy. This
term, introduced by Clausius, comes from the Greek words en-, in, and trope,
transformation. Entropy, as energy, is a function of the thermodynamic state. The
third law of thermodynamics, related to the unattainability of the absolute zero tem-
perature, was formulated by Nernst in 1906. Finally, in 1909, Carathéodory formu-
lated the last thermodynamic law, which was named the zeroth law. It was the time
when the great German mathematician David Hilbert tried to put all branches of
physics in axiomatic form. The zeroth law introduces an equivalence relation be-
tween two systems that are in thermal equilibrium with each other, and defines the
empirical temperature as the equivalence class of that equivalence relation. At the
end of the 19th century, statistical physics was initiated mainly due to the works of
Boltzmann, Maxwell and Gibbs. Statistical physics and thermodynamics are com-
plementary branches of science. Thermodynamics introduces various concepts, e.g.
entropy, which are used in macroscopic description of systems consisting of a great
number of entities (atoms, molecules, etc.), whereas statistical physics provides mi-
croscopic interpretation of these concepts.

We have not mentioned here many other scientists who contributed to the devel-
opment of thermodynamics, such as Boyle, Mariotte or Guy-Lusac. Among other
things, their investigations of dilute gases contributed to the discovery of the abso-
lute temperature scale.

At the beginning of the 20th century, thermodynamics was already a mature sci-
ence, which was additionally strengthened by the formation of statistical physics.
Despite this fact some circulating, simplified and often incorrect interpretations of
the laws of thermodynamics or its concepts still linger on, for instance, the interpre-
tation of entropy as a measure of disorder or the law of increasing entropy of the
Universe and its final thermal death. According to statistical physics, entropy is a
measure of all possible ways to arrange the constituents of a given system without
changing its macroscopic parameters. This definition of entropy does not have much
in common with the order of the constituents of the system, understood colloquially
as orderliness nice for the eye. Concerning the second example, thermodynamics
does not apply to systems in which gravitation dominates, therefore, extension of its
laws to the whole Universe is not well-founded.

The readers who wish to study the formal structure of thermodynamics in more
detail are referred to the book by H.B. Callen [3]. We also recommend the book by
P.W. Atkins [1], which contains many examples of application of thermodynamics
to practical problems in chemistry and physics.

2Carnot distinguished heat from caloric in his work.



Chapter 2
Basic Concepts and Definitions

Thermodynamics originated from observation of phenomena which occur on the
earth in macroscopic systems consisting of a great number of atoms or molecules.
Many concepts used in thermodynamics, such as pressure and temperature, are fa-
miliar to us from everyday experience. For instance, everybody knows that when
two bodies are brought into contact with each other and then isolated from the
surroundings, their temperature settles down after some time, which can be eas-
ily verified by putting something warm into the fridge. In this chapter, we discuss
the concepts of temperature, pressure and thermodynamic equilibrium in a more
formal way, and also give definitions of other basic concepts and quantities used in
thermodynamics.

2.1 Concept of Thermodynamic Equilibrium

The concept of thermodynamic equilibrium is fundamental to thermodynamics.

Definition 2.1 Thermodynamic equilibrium refers to particular states of a macro-
scopic system, called equilibrium states, which are independent of time (stationary
states) and in which no macroscopic flow of any physical quantity exists.

Note that a stationary state does not have to be an equilibrium state because a steady
macroscopic flow of heat or matter, or another physical quantity, may exist in the
system. For instance, if we keep the two ends of a wire at different and constant
temperatures then heat flows through the wire but the temperature gradient along it
does not depend on time. Thus, it is a stationary state but not an equilibrium state
because of the heat flow.
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Fig. 2.1 Gas compressed
initially in one part of the
vessel tends to an equilibrium
state in which the density of
molecules is the same in each
macroscopic part o the vessel

Fig. 2.2 Vessel with a gas is divided with a stiff wall permeable to heat (broken line). The arrows
represent the velocities of molecules. The system tends to the equilibrium state due to the flow of
heat from the part of higher temperature T1 to the part of lower temperature T2. In equilibrium, the
temperature in both parts has the same value Tf

The fundamental postulate of thermodynamics
Every isolated macroscopic system reaches eventually thermodynamic equi-
librium independently of the initial state of the system.

This postulate applies to systems observed in the scale of Earth and nothing in-
dicates that it can also be applied to systems in the cosmic scale and to the whole
Universe, in particular.

Two examples how systems reach their equilibrium states are shown in Figs. 2.1
and 2.2. In Fig. 2.1 (on the left), the gas has been compressed in one part of the ves-
sel, so its density in that part is larger than in the rest of the vessel. When the dividing
wall is removed the gas is not in an equilibrium state because of a macroscopic flow
of matter from the region of higher density to the region of lower density. After
some time the densities equalize and the system reaches the equilibrium state (on
the right).

Figure 2.2 shows a gas in a vessel divided into two parts with a stiff wall perme-
able to heat. Initially the temperature in both parts is the same. Then the gas in the
left part is heated quickly, so its temperature T1 is higher than the temperature T2 in
the right part. When the heating stops the system tends to the equilibrium state. The
heat flows from the high temperature region to the low temperature region. Since an
increase in the temperature means an increase in the kinetic energy of molecules,
the flow of heat is associated with a transfer of the kinetic energy from molecules in
the left part to molecules in the right part. It occurs through collisions of molecules
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Fig. 2.3 The system is separated by walls from the surroundings. The walls can be movable, can
conduct heat or can be permeable to matter. The system interacts with the surroundings through
the walls. If the walls are stiff and do not allow neither heat nor matter to pass through them then
the system is said to be isolated

with the dividing wall. When the equilibrium state is reached the temperature in
both parts is the same.

2.1.1 System and Surroundings

The system is a separate part of the world (Fig. 2.3a). Everything that does not
belong to the system is called the surroundings. The system is separated from the
surroundings by walls. These concepts are present in discussions of all phenomena
described by thermodynamics. The wall is called adiabatic if it is impermeable to
heat. The wall is called diathermal if it permits a heat flow. Finally, the wall can
be permeable to matter or not. The system with all walls impermeable to matter is
a closed system. The system is said to interact with the surroundings if any change
in the surroundings causes a measurable effect in the system. A system which does
not interact with the surroundings in any way is called an isolated system. Thus, the
energy, volume and amount of matter do not change in an isolated system.

We consider an isolated macroscopic system, which contains only a pure sub-
stance, without any internal walls limiting the motion of molecules, for instance,
a pure gas in a vessel. Only a few parameters are needed to completely charac-
terize an equilibrium state of such a simple system (Fig. 2.3b). They are: the in-
ternal energy U , which is a sum of the kinetic energy and the potential energy of
intermolecular interactions of all molecules in the system, the volume V and the
number of molecules N . We accept this empirical fact, confirmed by numerous ex-
periments, as a postulate. Other physical quantities, e.g., pressure, temperature or
entropy (which will be introduced later on), can be treated as functions of these three
parameters. Although energy, volume and number of molecules are also present in
classical mechanics, entropy does not have a mechanical counterpart, which means
that thermodynamics cannot be reduced to classical mechanics. This is because the
number of microscopic variables needed to completely describe the motion of all
molecules, i.e., the number of all positions and momenta, is enormous in a macro-
scopic system. For instance, for 1 mole of a pure substance (18 g in the case of
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water) it is of the order 1024. Therefore, the fact that only a few parameters can
completely characterize a macroscopic system in thermodynamic equilibrium may
seem surprising. However, the remaining microscopic variables play a role in the
flow of heat (see Fig. 2.2). They are hidden in the entropy, which means that they
have influence on the direction of processes in macroscopic systems.

2.1.2 State Parameters and State Functions

Definition 2.2 State parameters are physical quantities that characterize a system
in thermodynamic equilibrium.

For instance, the volume, number of molecules, pressure, temperature and internal
energy are state parameters. Not all state parameters are independent. As we have
already mentioned, to completely characterize an isolated system in thermodynamic
equilibrium only three parameters are needed: U , V and N . Other quantities, e.g.,
the pressure p and temperature T , are functions of these three parameters. However,
it depends on the actual physical situation which parameters are treated as indepen-
dent variables. For instance, if energy can be transferred between the system and
surroundings in the form of heat it is easier to control the temperature of the system
than its internal energy. Then T , V and N are treated as independent variables. In
the case of a gas closed in a cylinder with a movable piston, which remains in ther-
mal contact with the surroundings, the pressure and temperature of the system can
be easily controlled.

Definition 2.3 State function is a physical quantity which assumes a definite value
for each equilibrium state of a system, independent of the way that state is reached.

It follows from the definition of state parameters that they are also state functions
because their values depend only on the state of the system. In thermodynamics,
quantities which are not state functions are also considered. They depend on the way
a given equilibrium state is reached. The best known examples of such quantities are
work and heat.

Intensive and Extensive State Parameters We consider a system in thermody-
namic equilibrium. Each macroscopic part of the system is called a subsystem. If
the system is in equilibrium the same applies to its all subsystems. In Fig. 2.4a, the
system is divided into several subsystems but the boundaries between the subsys-
tems are only imaginary. An intensive parameter is a physical quantity which has
the same value in each subsystem, therefore, it cannot depend on the mass of a given
subsystem. In consequence, intensive parameters do not depend on the mass of the
whole system. For instance, temperature, pressure and chemical potential (discussed
later on) are intensive parameters.
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Fig. 2.4 (a) System in thermodynamic equilibrium is divided into several subsystems. An inten-
sive parameter, e.g., the pressure p or temperature T , has the same value in all subsystems. (b) In
a composite system, the value of an extensive parameter, e.g., the number of molecules N , volume
V and internal energy U , is the sum of contributions from all subsystems

Imagine now that we form a composite system made up of several identical sys-
tems, which become subsystems of the composite system (Fig. 2.4b). Then the vol-
ume of the composite system is the sum of the volumes of its subsystems and the
same concerns the number of molecules. Also the internal energy and entropy have
this property. In general, a physical quantity whose value for the composite system
is the sum of its values in individual subsystems is called an extensive parameter.
This means that for an extensive parameter X we have

X =
∑

i

X(i), (2.1)

where the index i numbers the subsystems and X(i) is the value of X in the ith
subsystem. It follows from the above definition that extensive parameters are pro-
portional to the mass of the system.

2.1.3 Thermodynamic Processes

Definition 2.4 Thermodynamic process is a change occurring in a system between
the initial and final equilibrium states.

The process is called adiabatic if there is no flow of heat between the system and
surroundings. The process is said to be: isochoric, if it occurs at constant volume,
isothermal, if it occurs at constant temperature, and isobaric, if it occurs at constant
pressure.

According to Definition 2.4, the initial and final states of the system are equilib-
rium states. However, the intermediate states are not equilibrium states, in general.
Real processes proceed at a finite rate and the system cannot reach thermodynamic
equilibrium during the process. However, we feel intuitively that the slower the pro-
cess is, the more time the system has to approach thermodynamic equilibrium at
each successive stage of the process. In the framework of thermodynamics, only



12 2 Basic Concepts and Definitions

Fig. 2.5 Irreversible expansion of a gas to the vacuum. The piston divides the system into two
parts. The left part is occupied by a gas and the right part is empty. When the piston is released a
spontaneous process of gas expansion occurs. The process is irreversible because at any moment
the system is not in thermodynamic equilibrium and the gas pressure is not well defined during the
process. Inhomogeneities in the molecular density may form during the process

equilibrium states are considered. Any description of non-equilibrium states would
involve many more parameters than in the case of equilibrium states. Therefore, it
is convenient to consider an idealized process which proceeds infinitely slowly and
can be treated as an approximation of real slow processes. Such an infinitely slow
process is called a quasi-static process.

Definition 2.5 Quasi-static process is a sequence of successive equilibrium states
of a system.

Differently from real processes, time does not appear in a quasi-static process. The
latter proceeds simply from one equilibrium state of the system to another equilib-
rium state in a continuous manner. A real process can be approximated by a quasi-
static process if it is sufficiently slow. In practice, the process is said to be slow if
it lasts much longer than the longest characteristic time of a given system. Imag-
ine, for instance, that we move the piston to compress a gas in a vessel. Then we
should compare the time of compression with the time the sound needs to reach the
wall opposite to the piston. For a system of a length of 3 m and for the speed of
sound of 332 m s−1, we find that the longest characteristic time of the system is of
the order 10−2 s. If we moved the piston with the speed of sound then regions of
a higher and lower density would form in the system, and the energy of the sound
wave would be dissipated. At any moment of the process, the system would not be
in thermodynamic equilibrium (cf. Fig. 2.5).

Mathematically a quasi-static process is represented by a curve in the space of
equilibrium states. The dimension of this space is equal to the number of indepen-
dent state parameters needed to define an equilibrium state of a given system. If X

denotes a state parameter then a change in X in a thermodynamic process is denoted
by �X, where

�X = Xf − Xi, (2.2)

and Xi and Xf are the values of X in the initial and final state, respectively. In calcu-
lations, instead of finite changes of parameters, we often consider infinitesimal, i.e.,
infinitely small changes. For the parameter X, an infinitesimal change of the param-
eter is denoted by the symbol dX. Such a procedure is justified, since according to
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Fig. 2.6 Example of an irreversible process. (a) Initially the block is in the state 1 and the sur-
roundings, i.e., the substrate is in the state 1′. (b) The block moves on a rough surface towards the
state 2 and then back from 2 to 1. In both cases, heat is produced because of the friction. The heat
is transferred to the surroundings, which causes that the surroundings do not return to the original
state even though the block does

Definition 2.5 we can consider processes between two arbitrarily close equilibrium
states.

Definition 2.6 Reversible process is a process to which a reverse process exists that
restores the original states of both the system and surroundings.

In other words, if in a given process the systems goes from the state 1 to the state 2
and the surroundings go from the state 1′ to the state 2′ then the process is reversible,
provided that there exists a process that simultaneously brings the system from 2 to
1 and the surroundings from 2′ to 1′. A process that is not reversible is called an
irreversible process. Irreversibility is often associated with dissipation of energy
in the form of heat. All real processes are irreversible. Two examples are shown
in Figs. 2.5 and 2.6. In Fig. 2.6 a block moves on a rough surface. Because of
friction heat is produced during this process. The block can be moved back to its
original position but due to the friction some amount of heat is transferred to the
surroundings independently of the direction of the motion, which means that the
surroundings do not return to their initial state.

In order a given process could be considered reversible, it must proceed with-
out friction (dissipation of energy) and at a vanishing rate. Thus, any reversible
process is also a quasi-static process, which means that during the process the sys-
tem passes over successive equilibrium states. However, it does not follow from
Definition 2.5 that the reverse statement is also true. Only the second law of ther-
modynamics, which postulates the existence of entropy as an additional function of
state (see Chap. 4), provides a deeper understanding of reversible and irreversible
processes. In particular, in Sect. 4.2.1, we derive an expression for an infinitesimal
flow of heat in reversible processes (see (4.24)). Since a quasi-static process is an
idealization of a real process, and not only a mathematical concept, it must be in
agreement with the formula mentioned above. In Chap. 4, we show that quasi-static
processes are also reversible processes.

Even though reversible processes are only idealizations of real processes, they
actually enable us to calculate changes in state functions in real processes. If a given
equilibrium state is reached as a result of an irreversible process then, in general, we
cannot calculate directly how state functions have changed in the process. However,
according to Definition 2.3, state functions do not depend on the process. Thus, if
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we can find a reversible process from a given initial state to a given final state then
we can calculate the change in any state function in the reversible process instead
of the irreversible one. Examples of such calculations are presented in the following
chapters.

2.1.4 Calculation of Physical Quantities in Quasi-static Processes

A quasi-static process is defined by a curve in the space of independent state pa-
rameters of the system. The curve starts from the initial state i and ends in the final
state f . During the process the system is all the time in thermodynamic equilibrium,
and only its state parameters change. Together with changes in the state parameters
also the state functions change. To determine how a state function changes during
the whole process, we have to know how it changes if two equilibrium states are
infinitesimally close to each other.

Let us assume, for instance, that the independent state parameters are: the internal
energy U , volume V , and amount of substance n, where the unit of the latter is the
mole. The definition of the mole is given in Sect. 2.2.2. Here, it is sufficient to
say that the number of molecules N is proportional to n, and the proportionality
coefficient is a very large number, thus, in practice, we can treat n as a continuous
variable. As a function of state we can take the temperature, T = T (U,V,n), for
instance. A change in T in any process amounts to

�T = Tf − Ti = T (Uf ,Vf ,nf ) − T (Ui,Vi, ni). (2.3)

If the process is quasi-static we can express �T as a sum of successive small steps,
which in the limit of infinitesimal steps, dT , reduces to the integral, i.e.,

�T =
∫ f

i

dT , (2.4)

where the integration goes from the initial state to the final state. An infinitesimal
change in the temperature is associated with infinitesimal changes in the state pa-
rameters, i.e.,

dT = T (U + dU,V + dV,n + dn) − T (U,V,n). (2.5)

Expanding the first term on the right-hand side in a Taylor series and leaving only
the terms linear in the infinitesimal increments of the state parameters, we get

dT =
(

∂T

∂U

)

V,n

dU +
(

∂T

∂V

)

U,n

dV +
(

∂T

∂n

)

U,V

dn. (2.6)

Since the choice of independent variables can be different, e.g., U , p and n, to
avoid confusion, the constant parameters at which the differentiation is performed
are shown explicitly. For instance,

(
∂T

∂U

)

V,n

�=
(

∂T

∂U

)

p,n

, (2.7)
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Fig. 2.7 Example of a
quasi-static process in the T V

plane, which consists of an
isochoric and isothermal
process. First, the temperature
changes from Ti to Tf at
constant volume V = Vi (the
isochor). Then the volume
changes from Vi to Vf at
constant temperature T = Tf

(the isotherm)

thus, the notation ∂T /∂U is ambiguous if we do not indicate the other variables.
As we have already mentioned, to define a quasi-static process we have to define

a curve (or a path) along which it proceeds in the space of state parameters. For
instance, the internal energy U can be treated as a function of T and V if we assume
n = const. An infinitesimal change in the function U(T ,V ) amounts to

dU =
(

∂U

∂T

)

V

dT +
(

∂U

∂V

)

T

dV. (2.8)

Here the space of independent state parameters is the subset of the plane: T > 0,
V > 0. Often we consider processes in which only one parameter of state varies. In
the example considered, it can be an isochoric process, if V = const, or an isother-
mal process, if T = const. It can also be a combination of these processes as shown
in Fig. 2.7.

Differentials and Differential Forms We consider a state function Y(X1, . . . ,

XM), where X1, . . . ,XM are independent state parameters. An infinitesimal change
in Y in a quasi-static process has the following general form:

dY =
M∑

i=1

(
∂Y

∂Xi

)

Xj �=i

dXi, (2.9)

where the notation Xj �=i means that the derivative with respect to Xi is calculated
at constant Xj for j �= i. In mathematics dY is called the differential of Y .1 To
calculate a finite change in Y in the quasi-static process, we integrate dY along the
path that defines the process in the parameter space:

�Y = Yf − Yi =
∫ f

i

dY. (2.10)

An important property of the differential is that the above integral does not depend
on the path of integration. Otherwise Y would not be a state function because its
value in the final state would depend on the process leading to that state. If we

1The term total differential is also used.
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do not know the explicit form of Y , but we know all its first derivatives, we can
determine Y , integrating dY from a selected initial state to a given final state along
any path. However, we have to be sure that the coefficients at dX1, . . . ,dXM are
really the first derivatives of a certain function Y with respect to the state parameters.
Let us denote these coefficients by Y1, . . . , YM . If they are the first derivatives of Y

then the mixed second order partial derivatives must be equal, thus, the identities

∂Yi

∂Xj

= ∂Yj

∂Xi

, (2.11)

must hold for all pairs i, j = 1, . . . ,M . It can also be shown that if conditions (2.11)
are satisfied then there exists a function Y such that Yi = ∂Y/∂Xi for i = 1, . . . ,M .

Not all quantities used in thermodynamics are state functions. To explain this,
we use a mechanical analogy and compare the work against gravitation with the
work against friction forces. In the first case, the work is equal to the change in
the potential energy of a body in the gravitational field. As we know it depends
only on the space points chosen, which is equivalent to saying that the infinitesimal
work performed by the gravitational force is equal to the differential of its potential
energy. In the second case, the friction force acts always in the direction opposite to
the motion of the body. The infinitesimal work is defined as a scalar product of the
friction force and an infinitesimal displacement of the body. However, it cannot be
a differential of a certain function because the total work depends on the length of
the path along which the body moves.

In thermodynamics, the work W done on the system and the heat Q supplied to
the system depend on the process, and not only on the initial and final state. This
means that they cannot be expressed as changes in some state functions. However,
for a quasi-static process, we calculate W and Q by integrating infinitesimal contri-
butions, in a similar way as in the case of a state function (see (2.10)), i.e.,

W =
∫ f

i

d̄W, (2.12)

Q =
∫ f

i

d̄Q. (2.13)

We use the notation d̄W and d̄Q for infinitesimal amounts of work and heat, respec-
tively, to distinguish them from differentials, since the result of integration depends
on the path in the space of state parameters. In general, an infinitesimal quantity d̄ω

has the following form:

d̄ω =
M∑

i=1

ωi dXi, (2.14)

where ωi = ωi(X1, . . . ,XM). If d̄ω is not a differential of a function then the coef-
ficients ωi do not satisfy conditions (2.11). For instance, if d̄ω = ω1(X1,X2)dX1,
which means that ω2 = 0, then ∂ω1/∂X2 �= 0 and ∂ω2/∂X1 = 0. In mathematical
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terminology, d̄ω is called a differential form.2 The differential of a function is simply
a special case of a differential form.

An example of a differential form is the work performed on the system (a gas,
for instance) whose volume changes by dV at the pressure p. The change in the
volume is equal to dV = Adx, where A denotes the area of the piston and dx is
its displacement. The force exerted on the piston by the gas amounts to pA. To
compress the gas quasi-statically, the external force must balance exactly the force
exerted by the gas, hence, the work performed by the external force amounts to

d̄W = −p dV, (2.15)

which means that d̄W > 0 if dV < 0. Since V is not the only state parameter (the
remaining parameters are T and n, for instance) conditions (2.11) are not satisfied
and d̄W is not a differential of a function. In Chap. 4, we will see that d̄Q = T dS,
where S stands for the entropy.

2.2 Extensive Parameters of State

It took scientists about 300 years, from the times of Galileo to the times of
Helmholtz, to establish the parameters needed to describe thermodynamic equilib-
rium of a system. Nowadays we know that in the case of an isolated system formed
by a pure substance, an equilibrium state is defined by three extensive parameters:
the volume, internal energy and amount of substance. All other properties of a sys-
tem in thermodynamic equilibrium can be expressed in terms of these parameters.
Below we present a short discussion of these quantities.

2.2.1 Volume

We denote the volume by V . The SI derived unit of volume is the cubic meter (m3)
but the volume of gases and liquids is often expressed in litres (L):

1 L = 1 dm3 = 10−3 m3 = 1000 cm3.

The fact that volume is an extensive parameter follows from its definition. If we
form a system made up of subsystems then the volume of the composite system
equals the sum of the volumes of all subsystems, provided that they do not overlap.
It is a well known geometrical property.

2To be precise, it is a differential form of rank 1 or 1-form.
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2.2.2 Amount of Substance

The amount of substance is denoted by n. If there are several chemical components
(compounds) in the system we add an index to number them, e.g., n1, n2, . . . or nA,
nB, . . . . The SI base unit for the amount of substance is the mole (mol). The amount
of substance is also called the number of moles.

Here we consider only a pure chemical substance. In everyday live, to specify
the amount of a given substance, we usually specify its mass or rather its weight.
However, from the stoichiometric point of view, the mass of a substance is not a con-
venient measure of its amount. In 1811, Amadeo Avogadro formulated a hypothesis
that a gas occupying a given volume at a given temperature and pressure always
contains the same amount of substance, independently of its kind. The same amount
was understood in the sense of stoichiometry of chemical reactions. For instance,
one portion of H2 and a half portion of O2 give one portion of H2O in the chemi-
cal reaction. In the times of Avogadro, the portion was a measure of volume, but it
was used to determine the number of moles. At the beginning of the 19th century it
was not known that matter consists of atoms or molecules, hence, its amount can be
expressed as a number of pieces, e.g., 100 atoms of Ar or 200 molecules of H2O.
Despite this fact, the concept of the mole was introduced, which actually allowed
to measure the amount of substance in pieces. The number of elementary entities,
i.e., atoms, molecules, ions, etc., contained in 1 mol of the substance is called the
Avogadro constant, NA. It amounts to

NA = 6.022 141 79 (30) × 1023 mol−1, (2.16)

which is an enormous number. Having determined the Avogadro constant, we can
express the number of elementary entities in the relation to NA.

Definition 2.7 Amount of substance is the number of elementary entities divided by
the Avogadro constant.

Thus, the amount of substance (number of moles) n is proportional to the number of
elementary entities in the substance, and the proportionality constant is N−1

A , hence

n = N

NA

. (2.17)

Since the above relation is the same for all substances, it is necessary to define the
elementary entity, e.g., H2, NaCl, CO2, etc.

It is needless to say that the modern knowledge of the structure of matter was
not available to the inventors of the mole. Their analysis was based mainly on the
stoichiometry of chemical reactions. However, the mole as a unit of the amount of
substance implicitly contains information about the molecular structure of matter. It
is also evident why the mass is not a convenient parameter to measure the amount of
substance in chemical reactions. For example, in the reaction of carbon combustion:
C + O2 → CO2, 1 mol of carbon and 1 mol of oxygen give one mol of carbon
dioxide. Expressing the same amounts of the substances in the units of mass, we
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have 12 g C and 32 g O2 which give 44 g CO2. No simple proportion can be deduced
in this case. However, such a proportion becomes obvious if the amount of substance
is expressed in moles.

As in the case of volume, it is quite obvious that the amount of substance is also
an extensive parameter. If we form a system composed of two or more subsystems,
each of which contains a given number of elementary entities of the same substance,
the total number of elementary entities in the system is simply the sum of these
numbers. The same concerns the number of moles, which follows from relation
(2.17).

2.2.3 Internal Energy

The internal energy is denoted by U . The SI derived unit of energy is the joule (J):

1 J = 1 N m = 1 kg m2 s−2.

Another non-SI unit of energy used in thermodynamics is the calorie (cal). In fact,
there are several differently defined calories. One of them is defined as the amount of
energy required to warm up one gram of water from 14.5 °C to 15.5 °C at standard
atmospheric pressure (101325 Pa), which is

1 cal = 4.1855 J.

Another one is the thermochemical calorie: 1 calth = 4.184 J. To express the ion-
ization energy or the energy liberated in nuclear reactions, the electronvolt (eV) is
used:

1 eV ≈ 1.602 × 10−19 J.

It is the amount of energy gained by a single electron in an electric potential differ-
ence of one volt (V). The electronvolt is not an SI unit.

Energy is an original concept and neither physics nor chemistry can give us the
answer to the question about its nature. They only show how energy can be measured
or calculated. We know the kinetic energy of bodies and their gravitational energy.
We can calculate the energy of electric charges in an electric field and the energy of
magnets in a magnetic field. A few examples of energy calculations are given below.
For instance, the kinetic energy of a body of the mass m, moving with the speed v

small compared to the speed of light, is given by:

E = 1

2
mv2.

A change in the gravitational energy of the same body elevated to the height h above
sea-level amounts to

�E = mgh.

The energy of a body at rest is given by the famous Einstein equation:

E = mc2,
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which expresses mass-energy equivalence, where m is the rest mass of the body and
c is the speed of light. It was derived by Einstein in the framework of the special
theory of relativity.

In thermodynamics, we also know some explicit formulae to calculate changes
in the internal energy, for instance, a change due to heating of a system. In general,
the internal energy of a system, U , consists of the kinetic energy of molecules and
the potential energy of intermolecular interactions. The latter manifests itself, for
instance, in the form of heat released during condensation of a gas. We can also
include in U the energy of chemical bonds, which shows up as the heat released or
absorbed in chemical reactions, and also the energy of electrons in atoms (ionization
energy), etc. The internal energy is a sum of all kinds of energy existing in a given
system. However, changes in the internal energy, rather than its absolute value, have
physical meaning. In practice, we choose a reference state, to which we assign zero
of the internal energy, and determine the energies of other states with respect to the
reference state. For instance, if there are no chemical reactions in the system and
electron excitations can be neglected then we include in the internal energy only
the kinetic energy of atoms or molecules and the potential energy of their mutual
interactions and the interactions with external fields (e.g., the gravitational energy).

The internal energy is an extensive parameter, as are volume and amount of sub-
stance. This statement is less obvious, however, than in the case of the last two
quantities. To show this, we consider a system combined of two identical systems.
The internal energy of the composite system can be expressed in the following form:

U = U(1) + U(2) + U(12),

where U(1) and U(2) denote the internal energy of the original systems, and U(12)

comes from the interactions of molecules of system (1) with molecules of sys-
tem (2). Since intermolecular interactions decay quickly with distance, only the
molecules close to the surface of contact can contribute to U(12). If L is the linear
size of the system then U(12) is proportional to aL2, where a is a molecular size,
whereas U(1) + U(2) is proportional to L3, hence, the ratio of U(12) to U(1) + U(2)

is proportional to a/L. Therefore, all surface effects can be neglected if the sys-
tem is sufficiently large (macroscopic). In what follows, we always assume that the
condition L � a is satisfied and the internal energy is an extensive parameter.

2.3 Intensive Parameters of State

In this section, we discuss, in a rather intuitive way, three intensive parameters: the
pressure, temperature and chemical potential. Their formal definitions are given in
Chaps. 3 and 4. Then, it will turn out that each of these parameters is equal to a
derivative of the internal energy with respect to an appropriate extensive parameter.
Note that the derivative of one extensive parameter with respect to another extensive
parameter must be an intensive parameter because the dependence on the mass of
the system cancels out.
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We know from everyday experience that if two bodies are brought into thermal
contact then a difference between their temperatures causes a flow of heat until
the temperature of one body becomes equal to the temperature of the other body.
Similarly, a difference in the pressure of a gas on the two sides of a piston causes the
action of a force proportional to the piston area and its motion, which stops when the
pressure on both sides is the same. This simple observation leads to the conclusion
that temperature and pressure are intensive parameters because they have the same
values in all subsystems of a given system in thermodynamic equilibrium. Otherwise
a macroscopic flow of heat or internal changes in the volume of the subsystems
would occur in the system, which would be in contradiction with the definition of
thermodynamic equilibrium (see Definition 2.1). A similar argumentation applies to
the chemical potential, which we discuss in more detail in Sect. 2.3.3. We will see,
however, that the chemical potential of a pure substance is uniquely defined by the
temperature and pressure of that substance. Thus, if the temperature and pressure
have the same values in all subsystems of a given system then the same is true for
the chemical potential. Therefore, it is easier to understand the concept of chemical
potential if at least two components are present in the system. For instance, if we add
a dye to water and wait for a sufficiently long time we will observe a uniform colour
in the whole volume. Even if the temperature and pressure are the same throughout
the system we observe a flow of the dye from the regions of higher concentration to
the regions of smaller concentration. This process continues until the concentration
of the dye becomes uniform. The flow of the dye is caused just by the difference in
its chemical potential in various parts of the system.

To summarize, a difference in the temperature is responsible for a flow of heat,
a difference in the pressure is responsible for a change in volume (flow of volume),
and a difference in the chemical potential of a given component is responsible for a
flow of that component. In thermodynamic equilibrium, no flow of any quantity ex-
ists, therefore, the temperature, pressure and chemical potential of each component
must have the same values in all subsystems of a given system.

2.3.1 Pressure

To define any physical quantity, a method of its measurement must be given. The
method can be arbitrary provided that it is reproducible. For instance, Galileo in his
studies on the uniformly accelerated motion measured time by means of the amount
of water that flowed during the experiment. His measurement of time was repro-
ducible, and the accuracy achieved by Galileo between the 16th and 17th century
was comparable with the accuracy of the 19th century watches.

Pressure is defined as the normal force acting on a surface, divided by the area of
that surface. For the pressure, symbol p is used. To determine the pressure exerted
by a gas on a movable piston of given area, we have to measure the force acting
on the piston. The force can be measured with a dynamometer, for instance. The SI
derived unit of pressure is the pascal (Pa):

1 Pa = 1 N m−2 = 1 kg m−1 s−2.
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Fig. 2.8 Schematic picture
of the mercury barometer
used to measure the
pressure p. In the closed part
of the tube, the pressure is
nearly zero. From the balance
of the forces acting on the
mercury column of the height
h, we have: ρgh = p, where
ρ is the mercury density and
g denotes the gravity of the
earth

Other non-SI units of pressure are: the bar (bar),

1 bar = 105 Pa,

the atmosphere (atm),

1 atm = 101 325 Pa,

the torr (torr),

1 torr = 1

760
atm ≈ 133.322 Pa,

and the millimeter of mercury (mmHg),

1 mm Hg ≈ 1 torr.

In the mercury barometer, the force exerted by air is balanced by the weight of the
mercury column of the height h in a glass tube (Fig. 2.8). The balance of the forces
gives:

p = mg

A
= ρgh,

where m is the weight of the mercury column, A is the area of its cross-section, ρ is
the density of mercury (ρ ≈ 13.6 g cm−3) and g ≈ 9.81 m s−2 denotes the gravity of
the earth. In the past, it was assumed that 1 torr = 1 mm Hg. However, the density of
mercury varies with temperature and the gravity depends on the place on the earth.
Nowadays 1 torr is defined exactly as 1

760 atm. Why is mercury used in barometers
instead of water, for instance? Water evaporates quickly and its density is too low
(1 g cm−3) to be used as a barometric liquid. It is easy to calculate the height of
the barometer if water or flaxseed oil (its density is about 0.94 g cm−3) was used
instead of mercury, to measure atmospheric pressure on the earth surface. On the
other hand, in the case of low pressure (air pressure decreases with the altitude),
the relative accuracy of the mercury barometer worsens because the height of the
mercury column decreases. At an altitude of 20 km, the pressure drops to 0.05 atm,
and at 700 km it is of the order 10−12 atm (a state of high vacuum). Such low
pressures cannot be measured with the mercury barometer.

The microscopic interpretation of pressure follows from classical and statistical
mechanics, and is related to a change in the momentum of molecules that collide
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Fig. 2.9 Gas pressure p that is measured (left picture) results from a great number of molecular
collisions with the piston. The right picture presents a great magnification of a small fragment of
the gas near the piston

with a wall (Fig. 2.9). The change in the momentum per unit time is equal to the
force exerted by the molecules on the wall. Thus, to determine the pressure exerted
on the wall one needs to calculate the average number of molecular collisions with
the wall per unit time.

2.3.2 Temperature

Zeroth Law of Thermodynamics and the Empirical Temperature The zeroth
law of thermodynamics, which leads to the concept of empirical temperature, was
formulated in 1909, which is more than 200 years after the discovery of the ther-
mometer. In order to formulate this law, the state of thermal equilibrium is to be
defined first. It is a state of thermodynamic equilibrium of a system restricted by
diathermal walls, i.e., walls permeable to heat.

The Zeroth Law of Thermodynamics
If two systems are in thermal equilibrium with a third system they are also in
thermal equilibrium with each other

From the point of view of mathematics, thermal equilibrium between two sys-
tems is an equivalence relation, and the empirical temperature t is defined as the
equivalence class of that relation. All systems that are in thermal equilibrium with
one another belong to the same equivalence class, to which a common value of the
temperature t is assigned. Different classes correspond to different values of the
empirical temperature. Obviously such an assignment can be done in many ways
because it can be based on different reproducible physical phenomena. Thus, it is
not surprising that many temperature scales have been in use, for instance, the Cel-
sius and Fahrenheit scales. None of these scales is particularly favoured. For in-
stance, the zero point on the empirical temperature scale is conventional. Only the
Kelvin temperature scale is fundamentally different from the empirical scales. It is
strictly related to entropy and the second law of thermodynamics, which we discuss
in Chap. 4. The temperature on the Kelvin scale is always positive and the zero
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Fig. 2.10 Thermal expansion of liquid is used in both thermometers shown. They are physically
identical but one has the Celsius scale and the other has the Fahrenheit scale. The height of the
liquid (e.g., mercury) column, h, shows the temperature measured. The freezing point and boiling
point of water correspond to the same values of h on both thermometers. However, on the Celsius
scale we read 0 °C and 100 °C, whereas on the Fahrenheit scale 32 °F and 212 °F, respectively

point corresponds to the lowest temperature, which is unattainable experimentally,
however.

Measurement of Temperature Temperature is one of the intensive parameters
that we know very well from everyday life. To measure it we often use mercury
thermometers. Nowadays two empirical temperature scales are in common use: the
Celsius scale in Europe and the Fahrenheit scale in the United States.

Celsius chose two reproducible phenomena (which means that they occur always
at the same temperatures): the freezing and boiling of water, and assigned to them
0 °C and 100 °C, respectively. Then he divided the scale between these tempera-
tures into 100 equal degrees. Fahrenheit did a similar thing but he chose different
phenomena. The temperature 0 °F corresponds to the freezing point of a mixture
of water and sal-ammoniac, and the value of 100 °F was assigned to the tempera-
ture of his (sick) wife. Fahrenheit also divided his scale into 100 equal degrees. The
conversion of one scale to the other is given by the following formula:

tF /°F = 9

5
tC/°C + 32, (2.18)

where tC and tF denote the temperatures in the Celsius and Fahrenheit scale, re-
spectively. It follows from the comparison of the two scales that 0 °C corresponds
to 32 °F and 100 °C corresponds to 212 °F. Figure 2.10 shows that there is no fun-
damental difference between these two scales.

In the measurement of temperature, a physical phenomenon sensitive to its vari-
ation should be used. Such a phenomenon is, for instance: thermal expansion of
liquid (used in household thermometers), electric resistance of metals (platinum
thermometer), electric potential difference at the junction of two different metals
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(thermopile). To measure temperature in the outer space or on the surface of a star,
the temperature dependence of the photon–energy distribution is used (pyrometer).

A thermometer based on thermal expansion of liquid is shown in Fig. 2.10. Let
us assume that in the range of temperature between t0 and t , the volume of the liquid
used in the thermometer satisfies the following relation:

V = V0
[
1 + α(t − t0)

]
, (2.19)

where α denotes the thermal expansion coefficient and the volume V0 corresponds
to the temperature t0. Measuring the height of the liquid column, h = (V − V0)/A,
where A is the cross-section area of the glass tube, we determine the empirical
temperature difference:

t − t0 = hA

V0α
. (2.20)

The larger V0 and smaller A (narrower tube) are, the more accurate the thermometer
is.

In the case of the platinum thermometer, the electric resistance of platinum is
measured, which in the range 0–630 °C varies according to the formula:

R = R0
[
1 + a(t − t0) + b(t − t0)

2]. (2.21)

In order to determine the constants R0, a and b, the following three points are used:
the freezing point and boiling point of water and the boiling point of sulphur. These
three constant points are needed to calibrate the thermometer. It should be added
that a good thermometer must satisfy one more condition. In the measurement of
temperature, a flow of heat between the thermometer and the system studied always
exists, which disturbs the temperature of the system. To minimize that disturbance,
the thermometer should be small compared to the system the temperature of which
we measure.

In the case of the thermopile, one measures the electric potential difference E

between two junctions of two different metals, which are placed at different temper-
atures. E depends on the temperature difference �t as follows:

E = a + b�t + c(�t)2. (2.22)

One of the junctions can be immersed in a mixture of ice and water, whose tem-
perature is treated as the reference temperature. Using other constant points, it is
possible to determine the constants a, b and c.

Kelvin Scale There exists a favoured temperature scale called the absolute scale
or Kelvin scale. The base SI unit of temperature is kelvin (K). The temperature
that appears in all fundamental laws of nature, called the absolute temperature or
thermodynamic temperature, denoted by T , is always expressed in the Kelvin scale.
Thus, if we use a different temperature scale we have to convert it to the Kelvin
scale. For instance, the temperature tC in the Celsius scale which corresponds to the
temperature T in the Kelvin scale is obtained from the following formula:

T/K = tC/°C + 273.15. (2.23)
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The temperature tC = 0 °C corresponds to T = 273.15 K and the lower limit of all
temperatures, called the absolute zero (T = 0 K), corresponds to tC = −273.15 °C.
In Chap. 4, we show that the thermodynamic definition of temperature defines T up
to an arbitrary constant factor, which means that the choice of the temperature unit
is arbitrary. However, since the Celsius scale appeared before the Kelvin scale, it
was convenient to use the same unit, i.e., 1 K and 1 °C mean the same temperature
difference. Because of this choice, however, the freezing point of water is not an
integer in the Kelvin scale.

It had passed more than one hundred years since the first experiments on di-
lute gases, performed by Boyle at the end of the 17th century, before all relations
between pressure, volume and temperature of a dilute gas were discovered. It was
found that these three parameters satisfy, to a good approximation, the following
equation:

pV = B(tC + 273.15 °C), (2.24)

where B is constant for a given amount of gas. Moreover, it was shown that

B = nR, (2.25)

where n is the number of moles of the gas, and

R = 8.314 472 (15) J K−1 mol−1 (2.26)

is called the gas constant. It is easy to recognize that the temperature in Eq. (2.24)
is actually expressed in the Kelvin scale, hence, (2.24) can be rewritten as follows:

pV = nRT . (2.27)

Thus, the Kelvin scale can be inferred from the studies of the properties of dilute
gases. We notice that the gas constant does not depend on the kind of a gas. This
is related to the fact that the amount of substance is expressed in moles. If we used
kilograms instead of moles, the value of R would depend on the molecular mass of
a given substance. For instance, it would be 16 times larger for hydrogen (H2) than
for oxygen (O2).

It follows from (2.27) that for a given amount of a dilute gas and at constant
volume, we have

p

p0
= T

T0
, (2.28)

where T0 and p0 define a reference state. This equation shows that measuring the
gas pressure, we can determine its temperature T . To calibrate such a gaseous ther-
mometer, one constant point is to be chosen, for instance, the freezing point of water
at atmospheric pressure.3

The absolute temperature also appears in the internal energy of a photon gas in
thermodynamic equilibrium with the perfect blackbody. According to the Stefan–
Boltzmann law

U = γV T 4, (2.29)

3In fact, it should be the triple point, i.e., a thermodynamic state in which water vapour, liquid
water and ice are in thermodynamic equilibrium (at T0 = 273.16 K).
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where γ is a constant. This energy can be determined from the intensity of the elec-
tromagnetic radiation emitted by the perfect blackbody, which means that it absorbs
photons independently of their energy. This method can be used, for instance, to
determine the temperature of stars. For example, the temperature on the sun sur-
face determined in this way amounts to 6000 K. The thermometers based on the
Stefan-Boltzmann law are called pyrometers. Expression (2.29) can also be applied
in measurements of very high temperatures, at which most of solids melt.

In laboratories, we can obtain both very high and very low temperatures. The
lowest temperature obtained on the earth amounts to 10−8 K (Boulder Colorado,
1995), and the highest temperature amounts to 1012 K (CERN, 2000). In both cases,
the amount of substance used in the experiment was very small compared to 1 mol.

2.3.3 Chemical Potential

In a closed system, energy can be transferred only in the form of work or heat.
In the general case, also matter can flow between the system and surroundings. To
describe thermodynamic equilibrium between the system and surroundings if a flow
of matter is possible, we have to introduce an additional intensive parameter, apart
from pressure and temperature, which is called the chemical potential. In the case of
a pure substance, it is just one quantity, denoted by μ. In a mixture, each component
has its own chemical potential. The SI derived unit of the chemical potential is
joule/mol (J/mol).

While temperature and pressure are the concepts we are familiar with, it is not
the case of the chemical potential. To explain this concept, we recall first that the
condition of mechanical equilibrium requires that pressures in all subsystems of a
given system are equal. Similarly, thermal equilibrium means that the temperatures
of all subsystems are the same. If these conditions are not satisfied simultaneously
then heat flows between the subsystems or their volumes change, which means that
the system is not in thermodynamic equilibrium.

We consider now a system composed of two subsystems separated by a immobile
diathermal wall impermeable to matter. The subsystems are in thermal equilibrium
but their pressures can differ because the wall is stiff. We assume that one subsys-
tem is formed by a two-component liquid mixture, in which the number of solvent
molecules is much greater than the number of molecules of the other component
(the solute). The other subsystem is formed by a pure solvent (Fig. 2.11). We also
assume that the temperatures and pressures in both subsystems are initially the same.

What will happen if we replace the wall impermeable to the matter flow with a
semi-permeable wall, permeable only to the solvent molecules? Since we have as-
sumed equal temperatures and pressures on both sides of the wall, it may seem that
nothing will happen, because the subsystems are in thermal and mechanical equi-
librium. Such an answer is wrong, however. In fact, a certain number of the solvent
molecules will flow from the subsystem containing the pure solvent to the subsys-
tem containing the mixture. Moreover, this flow causes the pressure of the mixture
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Fig. 2.11 System is divided into two subsystems by an immobile diathermal wall. The left part is
occupied by a pure solvent (black circles), and the right part contains a mixture of the solvent with
a small amount of a solute (white circles). The wall is permeable only to the solvent molecules.
Initially the temperatures and pressures in both parts are the same (left picture). However, because
of the difference in the chemical potential of the solvent, a certain number of the solvent molecules
flow to the right part. In thermodynamic equilibrium (right picture), the chemical potential of the
solvent is the same in both subsystems but there is a pressure difference Π , called the osmotic
pressure

to increase, which is possible because the wall is immobile. The pressure difference
between the mixture and the pure solvent is called the osmotic pressure.4 Thus, the
flow of the solvent molecules occurs in the direction of increasing pressure, which
seems counterintuitive. Apparently something is missing in our description of this
phenomenon. That what is missing is just the chemical potential. It turns out that the
chemical potential of the solvent in a mixture differs from the chemical potential of
the pure solvent. In the phenomenon discussed here, the temperature and pressure in
the mixture and in the pure solvent are initially the same but the chemical potential
of the pure solvent is higher than the chemical potential of the solvent in the mix-
ture, which we explain in Chap. 8. Anyway, the chemical potential difference causes
a flow of the solvent in the direction of the lower chemical potential. The flow stops
when the chemical potential of the solvent in both subsystems is the same.

If the chemical potential of a given component has the same value in all sub-
systems then the system is said to be in equilibrium with respect to the flow of
that component. This statement concerns only the components whose flow is not
restricted by some internal constraints, as in the example above. As we have already
mentioned, the chemical potential of a pure substance is a function of temperature
and pressure. It depends also on the form in which a given substance exists in given
conditions, i.e., as a gas, liquid, or solid. For example, the chemical potentials of
liquid water and ice are different functions of temperature and pressure. Therefore,
if we ask about the conditions in which liquid water and ice are in thermodynamic
equilibrium we have to take into account the equality of chemical potentials, apart
from the equality of pressures and temperatures. If the chemical potentials were dif-
ferent then the matter would flow between the liquid and solid, thus, they would

4The phenomenon of osmosis is discussed in Chap. 8.
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not be in thermodynamic equilibrium. These problems are discussed extensively in
Part II, which is devoted to phase transitions.

2.4 Equations of State

Having determined all state parameters for a given system in thermodynamic equi-
librium: the temperature T , volume V , pressure p, internal energy U , amount of
substance n, etc., we discover that they are not independent of one another. A rela-
tion between the state parameters X1,X2,X3, . . .:

F (X1,X2,X3, . . .) = 0, (2.30)

is called an equation of state. A system in thermodynamic equilibrium is uniquely
defined by a specified number of independent parameters of state. The remaining
parameters of state are functions of the independent parameters. Thus, they are state
functions, which can be determined if we know the equations of state.

In general, the equations of state depend on a given substance and on the range
of the parameters in which we want to describe that substance. For example, the
equations of state of a substance in the gaseous state are different from the equations
of state of the same substance in the liquid or solid state. Below we discuss three
model systems: the ideal gas, the van der Waals gas and the photon gas, which have
different equations of state. The parameters of state that appear in these equations
of state are: T , V , p, n and U . In the case of the photon gas, there is no dependence
on n, but it is an exception rather than a rule.

2.4.1 Ideal Gas

The parameters of state that describe a dilute gas in thermodynamic equilibrium
satisfy, to a good approximation, the following equations of state:

pV = nRT, (2.31)

U = f

2
nRT . (2.32)

R denotes the gas constant (see (2.26)), and f specifies the number of degrees of
freedom of a single molecule. For monatomic molecules, e.g., argon, f = 3. For lin-
ear molecules, e.g., oxygen, f = 5, and for more complex molecules, e.g., methane,
f = 6.5 A hypothetical gas for which Eqs. (2.31) and (2.32) are satisfied for all

5This follows from the equipartition theorem, which is derived in the framework of classical statis-
tical mechanics. According to the equipartition theorem each degree of freedom of the translational
or rotational motion of a molecule gives the same contribution to the internal energy, equal to RT/2
per 1 mol. A monatomic molecule has three degrees of freedom related to the translational motion
of the center of mass, hence, f = 3. A linear molecule has, in addition, two independent axes of
rotation perpendicular to its symmetry axis, hence, f = 3+2 = 5. Other molecules have three axes
of rotation, which gives f = 3 + 3 = 6.
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values of the state parameters is called the ideal gas, and (2.31) and (2.32) are the
equations of state of the ideal gas. The ideal gas can be treated as a limiting case of
a real gas when the pressure p → 0. In a very dilute gas, all intermolecular interac-
tions can be neglected and the only contribution to its internal energy comes from
the kinetic energy of molecules.

It follows from the equations of state of the ideal gas that we can choose three
independent variables from the five state parameters that appear in these equations.
For instance, if we substitute

T = 298 K, p = 1 atm, n = 1 mol,

into (2.31) and (2.32) we get, for f = 3:

V = 0.024453 m3, U = 3716.6 J.

If we increase the number of moles to n = 2, keeping T and p unchanged, then the
volume and internal energy also increase twice.

Choosing U , V and n as independent variables, we can transform the equations
of state of the ideal gas as follows:

p = 2U

f V
, (2.33)

T = 2U

f nR
. (2.34)

Here the temperature and pressure are treated as functions of state: p = p(U,V,n)

and T = T (U,V,n). We use this form of the equations of state in Chap. 4, to calcu-
late the entropy of the ideal gas.

As independent parameters of state we can also choose T , V and n, and rewrite
the equations of state in the following form:

p = nRT

V
, (2.35)

U = f

2
nRT . (2.36)

In this case, the pressure and internal energy are functions of state, which are for-
mally expressed as p = p(T ,V,n) and U = U(T ,V,n), although U does not de-
pend on V for the ideal gas. Relation (2.35) is used, for instance, to calculate the
work done during the isothermal compression (T = const) of the ideal gas.

Finally, as independent parameters of state one can choose T , p and n, which
gives

V = nRT

p
, (2.37)

U = f

2
nRT . (2.38)

Here, the volume and internal energy are functions of state: V = V (T ,p,n) and
U = U(T ,p,n), where U does not depend on p for the ideal gas. For instance,
Eq. (2.37) is used to determine the dependence of the chemical potential of the ideal
gas on pressure.
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2.4.2 Van der Waals Gas

If the gas is not sufficiently dilute the intermolecular interactions cannot be ne-
glected and equations of state (2.31) and (2.32) are not satisfied. Then Eq. (2.31)
can be replaced by the van der Waals equation of state:

p = nRT

V − nb
− an2

V 2
. (2.39)

It describes some real gases in an approximate way. Moreover, Eq. (2.39) applies
not only to gases but, to some extend, also to liquids. In Chap. 6, we show that
it explains qualitatively the change of gas into liquid. The constants a and b in
Eq. (2.39) are to be determined experimentally for a given substance. For exam-
ple, a = 0.1358 J m3 mol−2 and b = 3.85 × 10−5 m3 mol−1 for nitrogen (N2).
For most of simple substances, b ≈ 3 × 10−5 m3 mol−1 and a can vary from
0.003 J m3 mol−2, for helium, to 1 J m3 mol−2, for Freon.

For the internal energy of the van der Waals gas, the following formula is as-
sumed:

U = f

2
nRT − an2

V
. (2.40)

Equations (2.39) and (2.40) are empirical but they can also be derived from a molec-
ular theory (see Sect. 6.7). We notice that they reduce to the equations of state of
the ideal gas when a = 0 and b = 0. Since the ideal gas model is based on the as-
sumption of non-interacting molecules, the constants a and b must be related to
intermolecular interactions. The constant a stands at the term which takes into ac-
count, in an approximate way, attraction between molecules. Thus, it is a measure
of the strength of attractive forces. The presence of the constant b stems from the
fact that a molecule is not a point object but it occupies some volume. Therefore, it
is not possible to compress a given substance into the volume nb taken up by the
molecules themselves because such a state would have infinite pressure.

2.4.3 Photon Gas

The photon gas is a system formed by quanta of electromagnetic radiation (pho-
tons). As an ordinary gas of molecules, the photon gas has its volume, temperature,
internal energy and pressure. However, in contrast to a molecular gas, the number of
photons is not conserved. Photons are absorbed and emitted by the walls of a vessel
and because of that the number of moles is not a state parameter for the photon gas.
The state of thermodynamic equilibrium of the photon gas is called the blackbody
radiation, and the equations of state have the following form:

p = 1

3
γ T 4, (2.41)

U = γV T 4, (2.42)
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where γ ≈ 7.56 × 10−16 J m−3 K−4.6 Thus, the pressure, p = p(T ,V ), and the
internal energy, U = U(T ,V ), are state functions, and T and V are state parameters.
If we treat U and V as state parameters, and T = T (U,V ) and p = p(U,V ) as state
functions then we obtain

p = U

3V
, (2.43)

T =
(

U

γV

)1/4

. (2.44)

2.4.4 Equations of State in Terms of Intensive Parameters

Dividing the equations of state of the ideal gas (see (2.31) and (2.32)) by the mole
number n, we get

pv = RT, (2.45)

u = f

2
RT, (2.46)

where v = V/n and u = U/n denote the molar volume and the molar internal en-
ergy, respectively. Both v and u are intensive parameters, as are temperature and
pressure, i.e., they do not depend on the mass of the system. Equations (2.45) and
(2.46) provide as much information about properties of the system as Eqs. (2.31)
and (2.32) do. This stems from the fact that any macroscopic subsystem of a system
in thermodynamic equilibrium have the same physical properties as the whole sys-
tem. It simplifies the description of thermodynamic systems because the number of
independent parameters of state is reduced by one.

Treating in the same way Eqs. (2.39) and (2.40) for the van der Waals gas, we
find:

p = RT

v − b
− a

v2
, (2.47)

u = f

2
RT − a

v
. (2.48)

In the case of the photon gas, we divide both sides of Eq. (2.42) by V , which gives
U/V = γ T 4. Thus, instead of the molar internal energy, we have the internal energy
per unit volume.

The conclusions presented above follow from the definition of extensive and in-
tensive parameters. When we join together m identical systems, to form a new m

times larger system, the intensive parameters, such as pressure and temperature, do
not change, and the extensive parameters, such as volume and internal energy, are

6The constant γ = 8π5k4
B/(15c3h3), where kB = R/NA is the Boltzmann constant, and c and h

denote the speed of light in the vacuum and the Planck constant, respectively.
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multiplied by m. For example, if pressure is treated as a function of three extensive
parameters: U , V and n, then

p(mU,mV,mn) = p(U,V,n). (2.49)

Here m > 0 is an integer but it is easy to show that m can be treated as a positive real
variable. To show this, we consider a large system in thermodynamic equilibrium,
which is divided to N identical small (but macroscopic) fragments. Then we use M
fragments, to form a subsystem of the original system. Assuming that the extensive
parameters U , V and n correspond to the large system, for the subsystem, we have
mU , mV and mn, where m = M /N is a rational number. If N is a very large
number we can assume that m is practically a continuous variable. Thus, we can
substitute m = 1/n in (2.49), hence,

p(u, v,1) = p(U,V,n), (2.50)

i.e., p is a state function of two intensive parameters: u and v. A similar relation can
be derived for temperature.

Then we consider the internal energy as a state function of T , V and n. Since U

is an extensive parameter, the following identity must hold:

U(T ,mV,mn) = mU(T ,V,n). (2.51)

Substituting m = 1/n, we obtain

U(T ,V,n) = nU(T , v,1) = nu(T , v). (2.52)

We note finally that relations (2.49)–(2.52) are exact, as they do not refer to any
particular form of the equations of state.

2.5 Exercises

2.1 Calculate the kinetic energy of molecules in 22 L of air, assuming that the av-
erage speed of molecules is equal to the speed of sound and the density of air is
10−3 g cm−3. Ignore the fact that air is a mixture of several gases.

2.2 Calculate the change in the gravitational energy of 1 mol of water transferred
from the level h = 0 to the height h = 5 km.

2.3 Calculate approximately the change in the internal energy of 9 g of water caused
by its evaporation. The heat of evaporation amounts to 40 kJ mol−1. Compare it with
the change in the gravitational energy found in Exercise 2.2 and with the kinetic
energy of air. Draw a conclusion about the energy of interactions of water molecules.

2.4 Calculate approximately the change in the internal energy of 40 g of argon
caused by its evaporation. The heat of evaporation amounts to 6 kJ mol−1. Compare
it with the energy needed to evaporate water. Draw conclusions about the interaction
energies of water molecules and argon atoms.
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2.5 Calculate approximately the change in the internal energy of 12 g of carbon
caused by its combustion. The heat of combustion amounts to 400 kJ mol−1. Com-
pare it with the energy of intermolecular interaction found in Exercise 2.4. Compar-
ing the changes in the internal energy due to evaporation and combustion, draw a
conclusion about the energy of chemical bonds and intermolecular interactions.

2.6 The sun shines due to thermonuclear reactions in which nuclei of light elements
combine to form nuclei of heavier elements. As a result of a few nuclear reactions,
four hydrogen nuclei (protons) combine to form one nucleus of helium (2 protons
and 2 neutrons) and the energy of 26 MeV is released (1 MeV = 106 eV, 1 eV ≈
1.6 × 10−19 J). Calculate the energy released during the nuclear reaction in 1 mol
of hydrogen nuclei (protons).

2.7 As a result of annihilation, 1 mol of carbon is transformed into the energy of
a photon gas. Calculate how much energy has been released. Compare it with the
forms of energy discussed previously.

2.8 One mol of water vapour condenses. Find the change in its volume, assuming
1 g cm−3 for the density of liquid water and 10−3 g cm−3 for the density of water
vapour.

2.9 In the reaction of ammonia formation, 2 mol of NH3 are formed from 1 mol of
N2 and 3 mol of H2. Find the changes in the total amount of substance in the system
and in the amounts of individual components: N2, H2 and NH3.

2.10 A mixture of three gases: 3 mol of H2, 4 mol of H2O and 1 mol of Ar, occupies
a vessel of the volume of 100 L. A second vessel contains 5 mol of H2, 2 mol of
H2O and 1 mol of Ar, which also occupy 100 L. Then we fuse the vessels. Give the
total mole number and the volume of the gases in the fused vessels.

2.11 There are four vessels, each of which contains the same gas of the internal
energy U , volume V and mole number n. Then we fuse the vessels. Find the total
internal energy, volume and mole number of the gas in the fused vessels.

2.12 A man needs 2000 kcal a day, on average, in order his organism could function
properly. Calculate the power used up by a man. It is worth mentioning that the first
studies on the heat given off by animals were carried out by Lavoisier and Laplace
in the 18th century with the use of calorimeters. Thus, thermodynamics provided a
basis for the determination of the human diet from the energetic point of view.

2.13 Why do we use mercury in the barometer instead of water or oil, for instance?
What would the height of the barometer have to be if we used flaxseed oil, of the
density about 0.94 g cm−3, instead of mercury, to measure atmospheric pressure on
the earth surface?
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2.14 Is 1 atm a large pressure? What force does air exert on a human body?
What would happen to a human body if the pressure of air decreased to the value
10−6 atm?

2.15 Assume you drink water using a 20 cm long straw. What pressure difference
do you have to apply with your mouth (when you suck in air in the straw you simply
produce an underpressure above the liquid surface), to drink up water?

2.16 At a depth of 10 m there is a submarine. The pressure of air inside the subma-
rine amounts to 1 atm. A sailor wants to lift the lid to let a diver out into water. The
lid area is equal to 2 m2. Calculate the force the sailor has to apply to lift the lid.
Explain why to let the diver out of the submarine, the sluice-gate must be filled with
water first.

2.17 Convert 0 °F, 70 °F and 451 °F to the Celsius scale.

2.18 What temperature in the Kelvin scale corresponds to −273.15 °C?

2.19 Express the temperature of 0 K in the Fahrenheit scale.

2.20 Convert 100 °F to the Celsius scale. How do we know that Fahrenheit’s wife
was sick when he calibrated the thermometer? Is the human body temperature suit-
able for the calibration of thermometers?

2.21 How would you calibrate a pyrometer if you know that the temperature of
water at the triple point is equal to T = 273.16 K? You have a means of measuring
the energy emitted by the perfect blackbody at a given temperature. The internal
energy U is proportional to the intensity of radiation.

2.22 Prove that the internal energy per mole does not depend on the size of the
system, thus, it is an intensive parameter. Assume that you join together m identical
systems characterized by the same parameters of state: U , V and n. Calculate the
internal energy per mole for each system and for the composite system and compare
the results.

2.23 We have two vessels containing water at the same temperature and pressure.
The volume of the vessels amounts to V1 = 18 cm3 and V2 = 36 cm3, respectively,
and the density of water is ρ = 1 g cm−3. Calculate the mole number of water and
its molar density (the mole number per unit volume) for each vessel. Then we join
the vessels together. Calculate the volume, mole number and molar density after
the fusion of the vessels. Which of them are extensive parameters and which are
intensive parameters? Why is the density ρ an intensive parameter?

2.24 Determine the volume per one molecule of H2O in liquid water. The density
of water ρ = 1 g cm−3, the Avogadro constant NA = 6.022 × 1023 mol−1 and the
molar mass of water M = 18 g mol−1.
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2.25 Calculate an infinitesimal increase in the volume, dV , if the temperature in-
creases by dT , the pressure increases by dp, and the mole number n does not
change. Perform the calculations for the ideal gas.

2.26 Calculate an infinitesimal increase in the internal energy, dU , if the tempera-
ture increases by dT , the volume increases by dV , and the mole number n does not
change. Perform the calculations for the van der Waals gas.

2.27 Calculate an infinitesimal increase in the pressure, dp, for the photon gas if
the temperature increases by dT .

2.28 Which of the expressions presented below is a differential of a function of x

and y: (1) d̄ω = 2xy3dx + 3x2y2dy, (2) d̄ω = xy4dx + x2y2dy. Find this function.

2.29 Show that in the case of the differential form which is not a differential of a
function in Exercise 2.28, the integral

∫ f

i
d̄ω depends on the path of integration.

As the initial point (i) and final point (f ) in the xy plane assume (0,0) and (1,1),
respectively. Perform calculations for two paths: (1) 0 ≤ x ≤ 1, y = 0 and x = 1,
0 ≤ y ≤ 1, (2) 0 ≤ x ≤ 1, y = x. Verify that in the case of the differential df , the
integral does not depend on the path of integration and is equal to �f = ff − fi .

2.30 A system that contains 5 mol of a gas in a vessel of the volume V = 120 L and
at a temperature of 25 °C is in thermodynamic equilibrium. Then, we let a certain
amount of the gas out of the vessel. The pressure of the gas in the new state is equal
to p = 0.5 atm. What is the amount of the gas that has escaped?

2.31 A vessel of the volume 0.1 L is occupied by 1 mol of N2 at the temperature
T = 298 K. Calculate the pressure and internal energy of the gas. Apply the equation
of state of the ideal gas.

2.32 A vessel of the volume 0.1 L is occupied by 1 mol of N2 at the temperature
T = 298 K. Calculate the pressure and internal energy of the gas. Apply the van
der Waals equation of state with the constants: a = 0.1358 J m3 mol−2 and b =
3.85 × 10−5 m3 mol−1. Compare the result with the result of Exercise 2.31.

2.33 A vessel of the volume 1000 L is occupied by 1 mol of N2 at the temperature
T = 298 K. Calculate the pressure and internal energy of the gas. Apply the van der
Waals equation of state, with the same constants a and b as in Exercise 2.32, and
then the equation of state of the ideal gas. Compare the result with the results of
Exercises 2.31 and 2.32.

2.34 Calculate the internal energy of a photon gas contained in a vessel of the vol-
ume of 1 m3, for two values of the temperature: 298 K and 400 K. Calculate the
pressure exerted by the gas on the walls of the vessel.
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2.35 Verify the relations:

p(U,V,n) = p(mU,mV,mn) and U(T ,mV,mn) = mU(T ,V,n),

for the ideal gas and van der Waals gas.

2.36 Calculate −V −1(∂V/∂p)T,n for the ideal gas and van der Waals gas. Does this
expression make sens for the photon gas? Calculate an analogous quantity for the
photon gas at constant internal energy U .

2.37 Calculate V −1(∂V/∂T )p,n for the ideal gas and V −1(∂V/∂U)p for the photon
gas.

2.38 Calculate (∂U/∂T )V,n for the ideal gas, van der Waals gas and photon gas.

2.39 Assuming that most of air is contained in a thin, 10 km in thickness, layer
around the earth, the pressure is equal to 1 atm, and the average temperature amounts
to 14 °C, calculate the total mole number of gases in the atmosphere. Then assuming
that oxygen makes 21 % of air, calculate the amount of oxygen. Living organisms
use up 0.5 × 1016 mol of oxygen per year. If the oxygen supply was not renewed in
the photosynthesis process, how quickly would it be lacking in the atmosphere?

2.40 The temperature on the sun surface amounts to about 6000 K. The amount of
energy radiated by the sun in the form of photons per unit time and per unit area is
given by

I = uc

4
,

where u is the internal energy of the photon gas per unit volume, and c = 3 ×
108 m s−1 is the speed of light. The radius of the sun is equal to 700 000 km. Cal-
culate the energy E radiated by the sun during one second. Consider if the mankind
will cope with the energetic crisis after the resources of oil have been exhausted.



Chapter 3
Internal Energy, Work and Heat

3.1 First Law of Thermodynamics

In the previous chapter, we introduced the concept of the internal energy of a system
as one of the extensive parameters of state. It follows from the energy conservation
principle that the internal energy of an isolated system is a constant quantity. In ther-
modynamics, however, we are mainly interested in interactions between the system
and surroundings, therefore, we have to specify possible ways of energy transfer
between them. One of these ways is mechanical work. If the system performs work
its energy decreases. For example, if we squeeze a spring it can perform work later,
decreasing its potential energy. If an external agent (surroundings) performs work
on a mechanical system the energy of the system increases.

We already know that thermodynamics deals with macroscopic systems consist-
ing of a great number of atoms or molecules. The internal energy of such a system,
as the energy of a mechanical system, can be changed by means of mechanical
work. An example of mechanical work is compression of a gas in a vessel with a
movable piston. We can determine such work if at any moment we know the force
acting on the piston and its displacement, however, we do not need to know how
individual molecules interact with the piston. Obviously, it is not the only way to
perform work on the system. For instance, when an electric mixer is immersed in a
liquid we can perform work by mixing the liquid. Due to the viscosity there exists
friction between the liquid and a rotating mixer. Thus, the electric current, which
drives the mixer, performs a definite amount of work on the system, which can be
easily measured.

In the case of a simple mechanical system, such as the spring, the work done by
an external agent is stored in the form of potential energy, which does not change
as long as the system does not perform any work. On the other hand, if some work
is performed on a thermodynamic system, the energy stored in it can escape to the
surroundings in the form of heat. To prevent it, we have to insulate thermally the
system with adiabatic walls. Then the increase in the internal energy of the system,
�U , is exactly equal to the work performed on the system:

�U = W. (3.1)
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If the system performs work on the surroundings its internal energy decreases,
hence, �U < 0 and also W < 0. Note that Eq. (3.1) means that adiabatic walls
enable us to measure changes in the internal energy, provided that we can measure
the work performed by the system or on the system.

If the system is not adiabatically isolated (3.1) is not satisfied. Then the differ-
ence:

Q = �U − W, (3.2)

is called heat, provided that the amount of matter in the system does not change.
Heat is simply another form of energy transfer between the system and surround-
ings. A flow of heat results from chaotic collisions of molecules inside and outside
the system with molecules of the walls. Using suitable materials for the walls, we
can considerably limit the flow of heat. For example, we can use double glass walls
covered with a silver layer, with a very dilute gas in between (thermos is built in
that way), which can be considered as a good thermal insulation. Applying better
and better materials we can approach the perfect thermal insulation, that is, the adi-
abatic wall, for which Q = 0 by definition.

Apart from work and heat, we can change the internal energy simply by varying
the amount of matter in the system. For instance, if we combine two identical sys-
tems to form a bigger system then the amount of matter increases twice, compared
to the original system, and the same concerns the internal energy. In this case, no
heat flows and no work is performed. This form of energy transfer is called some-
times chemical work; here we denote it by Z. The possible ways of changes in the
internal energy of a thermodynamic system are summarized in the first law of ther-
modynamics. This law expresses the energy conservation principle for macroscopic
systems.

The First Law of Thermodynamics
There exists an extensive function of state, called the internal energy U , whose
change in a thermodynamic process:

�U = Q + W + Z, (3.3)

is caused by the flow of heat Q, work performed W , and flow of matter Z.

The first law of thermodynamics postulates existence of the internal energy as a
function of state and specifies three possible means of its variation. Note that the
same change in the internal energy, �U , can be obtained in different processes that
begin and end in the same states. For instance, compressing a gas in an adiabatic
process (Q = 0) from the volume Vi to the volume Vf < Vi , we perform the work
W = W1, which increases the gas temperature from Ti to Tf > Ti . The same final
state is reached if we first compress the gas isothermally to the volume Vf , at the
temperature T = Ti (W �= 0, Q �= 0), and then heat the gas to the temperature Tf at
constant volume V = Vf (W = 0, Q �= 0). In both processes Z = 0 but the amounts
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of work and heat are different. In the first process �U = W1, whereas in the second
process the work W2 is done and the heat Q2 is transferred, hence, �U = W2 +Q2.
This example shows, that we can change the means of energy transfer between the
system and surroundings, to obtain the same final state. It also shows that W and Q

cannot be functions of state because their values depend on the process linking the
initial and final states, and the same concerns Z.

The first law is formulated for finite changes in the internal energy. In general,
we can calculate W , Q and Z only for quasi-static processes, which involves the
use of infinitesimal quantities. Then Eq. (3.3) adopts the following form:

dU = d̄Q + d̄W + d̄Z, (3.4)

where d̄Q, d̄W and d̄Z denote infinitesimal amounts of heat, work and chemical
work, respectively. In what follows we assume that the system performs work, or
work is performed on the system, only if the volume of the system changes.

Chemical work appears in the context of mixtures, phase transitions and chemical
reactions. For the time being, we will ignore this contribution to dU , however. That
is, we assume that there is no transfer of matter between subsystems of a given
system or between the system and surroundings, and that no reaction occurs. Then
using (2.15) and (3.4), we get

dU = d̄Q − pdV. (3.5)

The internal energy increases when heat is supplied to the system (d̄Q > 0) or work
is done on the system (d̄W = −pdV > 0), and it decreases if heat is given off by
the system (d̄Q < 0) or work is done by the system (d̄W < 0). Below we persent a
few examples of calculation of work and heat in various processes.

3.2 Isochoric Process

During an isochoric process the volume of the system, V , remains constant, hence

d̄W = −pdV = 0. (3.6)

The internal energy can change only if heat can flow between the system and sur-
roundings. We assume that the flow of heat is a quasi-static process, thus

dU = d̄Q. (3.7)

It should be emphasized, however, that Eq. (3.7) does not mean that d̄Q is equal to
dU for all values of the state parameters, otherwise Q would be a state function.
This equality is satisfied only at constant V . As independent parameters of state we
choose the temperature and volume (the number of moles, n, is assumed constant),
hence

dU =
(

∂U

∂T

)
V

dT +
(

∂U

∂V

)
T

dV. (3.8)

Putting dV = 0 in (3.8) and then comparing with (3.7), we get

d̄Q =
(

∂U

∂T

)
V

dT . (3.9)
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3.2.1 Heat Capacity at Constant Volume

The quantity

CX =
(

d̄Q

dT

)
X

, (3.10)

is called heat capacity of the system at constant parameter X, where for X we can
substitute the volume V , pressure p, or another parameter of state. In the isochoric
process, heat is transferred at constant V , hence

CV =
(

d̄Q

dT

)
V

(3.11)

is called the heat capacity at constant volume. Heat capacity specifies the amount of
heat d̄Q, to be supplied to the system in a given process, to increase its temperature
by dT . The SI derived unit of heat capacity is joule kelvin−1 (J K−1). In general, heat
capacity is a function of temperature and other parameters of state of the system. In
the case of CV , we can use relation (3.9), from which we get

CV =
(

∂U

∂T

)
V

, (3.12)

which means that CV = CV (T ,V ). Heat capacity is an extensive function of state as
a derivative of U with respect to an intensive parameter. Therefore, it is convenient
to introduce a quantity that does not depend on the amount of substance, i.e., the
molar heat capacity at constant volume, cv = CV /n, where v = V/n is the molar
volume.

In the case of the ideal gas, the internal energy is given by (2.32), hence, the
molar heat capacity at constant volume amounts to

cv = 1

n

(
∂U

∂T

)
V

= f

2
R. (3.13)

Note that it depends only on the structure of a single molecule in the gas. For
monatomic molecules, cv = 3R/2, for linear molecules, cv = 5R/2, and for non-
linear molecules, cv = 3R.

To obtain the heat absorbed by the system during the isochoric process of heating
from the initial temperature Ti to the final temperature Tf > Ti , we integrate d̄Q:

Q =
∫ Tf

Ti

d̄Q = n

∫ Tf

Ti

cv(T , v)dT . (3.14)

If Tf < Ti then Q < 0, i.e., heat is given off to the surroundings. If cv does not de-
pend on temperature, or that dependence can be neglected for the given temperature
range, we get

Q = ncv(Tf − Ti). (3.15)

The heat Q is equal to the change in the internal energy of the system: Q = �U .
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3.3 Isobaric Process

The isobaric process occurs at constant pressure. Here we consider a quasi-static
process, which means that the pressure in the system is equal to the external pressure
during the process. The flow of heat between the system and surroundings in this
process causes the volume of the system to change. It is very easy to calculate work
in the isobaric process, i.e.,

W =
∫ Vf

Vi

d̄W = −p

∫ Vf

Vi

dV = −p(Vf − Vi), (3.16)

where Vi and Vf denote the system volume in the initial and final state, respectively.
Since the pressure is constant, from expression (3.5) we get

d̄Q = dU + pdV = d(U + pV ). (3.17)

The quantity

H = U + pV (3.18)

is called enthalpy. Enthalpy, as the internal energy, is a function of state and an
extensive quantity, and its unit is joule (J). Now relation (3.17) can be expressed as
follows:

d̄Q = dH. (3.19)

Comparing (3.19) with (3.7), we see that the infinitesimal amount of heat in the
isochoric process is equal to the differential of the internal energy, whereas in the
isobaric process, it is equal to the differential of enthalpy.

3.3.1 Heat Capacity at Constant Pressure

The heat capacity at constant pressure, Cp , is defined in a similar way as CV , i.e.,

Cp =
(

d̄Q

dT

)
p

. (3.20)

In this case, it is natural to take the temperature and pressure as the independent
parameters of state. We notice that the equality Cp > CV must hold because in the
isobaric process, only a part of the heat absorbed by the system raises its tempera-
ture. The rest of it is used to perform work against the external pressure p when the
system expands due to the heating. Treating the enthalpy as a function of T and p,
we get

dH =
(

∂H

∂T

)
p

dT +
(

∂H

∂p

)
T

dp. (3.21)

In the isobaric process dp = 0, thus, using (3.21) and (3.19), we get

d̄Q =
(

∂H

∂T

)
p

dT . (3.22)
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Finally, substituting (3.22) into (3.20), we obtain

Cp =
(

∂H

∂T

)
p

. (3.23)

The enthalpy is an extensive state function, hence, the heat capacity Cp = Cp(T ,p)

is also a state function and an extensive quantity. Therefore, as in the case of CV ,
we define the molar heat capacity at constant pressure, cp = Cp/n.

The enthalpy of the ideal gas results from the equations of state: U = f nRT/2
and pV = nRT , hence

H =
(

f

2
+ 1

)
nRT . (3.24)

Substituting (3.24) into (3.23) and dividing by n, we get

cp =
(

f

2
+ 1

)
R. (3.25)

For monatomic molecules, cp = 5R/2, for linear molecules, cp = 7R/2, and for
other molecules, cp = 4R. Comparing (3.25) with (3.13), we find the following
simple relation between cv and cp for the ideal gas:

cp − cv = R. (3.26)

The heat absorbed by the system during the process of heating or cooling at
constant pressure p is equal to the change in the enthalpy of the system: Q = �H .
It can be expressed in terms of cp as follows:

Q =
∫ Tf

Ti

d̄Q = n

∫ Tf

Ti

cp(T ,p)dT , (3.27)

where Ti and Tf denote the initial and final temperature, respectively. If cp does not
depend on temperature we get

Q = ncp(Tf − Ti). (3.28)

3.4 Adiabatic Process

3.4.1 Reversible Adiabatic Process

In the adiabatic process, there is no transfer of heat between the system and sur-
roundings (d̄Q = 0), and the change in the internal energy is equal to the work
performed on the system:

dU = d̄W. (3.29)

The work performed on the system increases its internal energy U as well as its
temperature. The parameter of state that we can control in the adiabatic process is
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the volume V . Then the pressure and temperature are functions of V which we want
to determine for the ideal gas.

The ideal gas is defined by the two equations of state: pV = nRT and U =
f nRT/2. Here, the number of moles n is constant. Note that the term nRT in U

can be replaced with the product pV , hence, U = fpV/2. Since d̄W = −pdV ,
relation (3.29) adopts the following form:

f

2
d(pV ) = −pdV. (3.30)

To the differential of a product, the usual rules of the differential calculus apply, i.e.,

f

2
d(pV ) = f

2
(pdV + V dp) = −pdV, (3.31)

hence

(f + 2)pdV + f V dp = 0. (3.32)

Dividing both sides of the last equation by pV , we get

(f + 2)
dV

V
+ f

dp

p
= d ln

[(
V

V0

)f +2(
p

p0

)f ]
= 0, (3.33)

where V0 and p0 denote the volume and pressure of a reference state, respectively.
When the differential of a function vanishes, the function must be equal to a con-
stant. Thus, the relation between the pressure and volume in a quasi-static (re-
versible) adiabatic process in the ideal gas has the following form:

pV 1+2/f = p0V
1+2/f

0 = const, (3.34)

where the constant can be obtained from the initial values of the pressure and vol-
ume. In the case of monatomic molecules, the exponent equals 5/3. To obtain the
relation between the temperature and volume in the adiabatic process, we multiply
the equation pV = nRT by V 2/f , which leads to the following formula:

T V 2/f = T0V
2/f

0 = const, (3.35)

where T0 = p0V0/(nR).

3.4.2 Irreversible Adiabatic Process at Constant Pressure

The system we want to consider is shown in Fig. 3.1. A vessel of the total volume
Vtot is divided into two parts by a movable piston. One part is occupied by a gas
and the other part is empty. The whole vessel is isolated adiabatically. We assume
that the piston is coupled to a mechanical device which can perform work on the
system or receive work from the system without loss of energy in the form of heat.
In addition, we assume that processes taking place in the device are always quasi-
static, independently of the process occurring in the system coupled to it. We call
such a device a reversible work source.
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Fig. 3.1 The vessel is isolated adiabatically and the initial gas pressure amounts to pi . An ex-
ternal constant force acts on the piston, exerting the pressure pext < pi on the gas (left figure).
After the piston is released, it moves with accelerated motion. If the volume of the vessel is suf-
ficiently large then the final gas pressure pf is equal to pext (right figure). The other possibility
is that pext < pf < pi and the gas fills the whole volume of the vessel. The process described is
irreversible. The gas pressure is well defined only at the beginning and at the end of the process
when the system is in thermodynamic equilibrium

In Fig. 3.1, the reversible work source acts on the piston with a constant external
force Fext, hence, the pressure exerted on the gas equals pext = Fext/A, where A

is the piston area. An adiabatic process at constant pressure is possible only if the
initial gas pressure pi differs from pext. Initially the piston is blocked and the gas
is in thermodynamic equilibrium in the volume Vi and at the pressure pi > pext.
When the piston is released the gas starts to expand and reaches eventually a new
equilibrium state in the volume Vf and at the pressure pf , where pext ≤ pf < pi .
The equality pf = pext holds only if the initial volume of the empty part of the
vessel is sufficiently large. If we decreased pext at constant values of Vtot, Vi and pi ,
we would get Vf = Vtot at a certain value of pext, i.e., the whole vessel would be
filled with the gas.

The parameters of the final equilibrium state, Vf and pf , are obtained from the
first law of thermodynamics:

Uf − Ui = U(Vf ,pf ) − U(Vi,pi) = W. (3.36)

Note that the process is not quai-static because the gas pressure is not equal to
the external pressure pext during the process, and actually the former is not even
well defined. The piston moves with accelerated motion and regions of a larger and
smaller density form in the gas. Since the piston gains kinetic energy during its
motion, it does not stop when the external force becomes equal to the force exerted
by the gas. It can perform a few oscillations damped by internal friction present in
the gas. Eventually, the piston stops because its kinetic energy is dissipated. The
work done by the gas, to increase the kinetic energy of the piston, is then dissipated
into the gas, thus, it does not contribute to the change in the internal energy of the
gas. The only contribution comes from the work done by the gas on the reversible
work source, which by definition is quasi-static, hence

W = −pext�V = −pext(Vf − Vi). (3.37)

From (3.36) and (3.37), we get

U(Vf ,pf ) − U(Vi,pi) = −pext(Vf − Vi). (3.38)

Now we have two possibilities: either pf = pext in the final state and Vf is de-
termined from (3.38), or Vf = Vtot and we determine pf > pext from (3.38). In
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particular, if pext → 0 then Vf = Vtot for a sufficiently small value of pext, which
means that W = −pext(Vtot − Vi) → 0. In the limiting case pext = 0, the gas ex-
pands freely to the vacuum. Since it performs no work and the process is adiabatic,
the internal energy of the gas does not change.

3.5 Isothermal Process

3.5.1 Reversible Isothermal Process

The isothermal process occurs at constant temperature. As the second parameter
of state we choose the volume. Changing the piston position, we can compress or
expand the gas in the vessel. A change in the piston position results in a change in
the gas pressure. Here we consider a quasi-static (reversible) process, which means
that at any moment the external force acting on the piston is balanced by the force
exerted on the piston by the gas. Thus, we can calculate the work W done on the
system if we know the equation of state of the gas, i.e., p = p(T ,V ); the work is
given by

W =
∫ Vf

Vi

d̄W = −
∫ Vf

Vi

p(T ,V )dV. (3.39)

In the ideal gas case, p = nRT/V , hence

W = −nRT

∫ Vf

Vi

dV

V
= nRT ln

Vi

Vf

. (3.40)

If the initial volume Vi is greater than the final volume Vf then W > 0. Since the
internal energy of the ideal gas depends only on temperature (the mole number is
assumed constant), �U = 0 in the isothermal process, hence

Q = −W = nRT ln
Vf

Vi

. (3.41)

Thus, the amount of energy absorbed by the system in the form of work is given off
in the form of heat. When the system absorbs heat from the surroundings at constant
temperature it simultaneously performs the work W ∗ = −W equal to the amount of
heat absorbed. Note that the relation Q = −W is not satisfied, in general, because
the internal energy of other systems usually depends on the volume, thus, �U �= 0
in the isothermal process.

3.5.2 Irreversible Isothermal Process at Constant Pressure

Now we assume that the ideal gas expands at constant temperature but the external
force acting on the piston is constant and given by the condition

pext = pf = nRT

Vf

. (3.42)
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During the process the external pressure pext does not balance the gas pressure.
Such a process is not quasi-static, thus, it is not reversible. However, if the piston is
coupled to a reversible work source (see Sect. 3.4.2) we can calculate the work done
by the gas in this process:

W ∗
irr = pext�V = nRT

(
1 − Vi

Vf

)
, (3.43)

where the index ‘irr’ refers to irreversible processes. We can now compare W ∗
irr with

the work done by the system in the reversible isothermal process, i.e.,

W ∗ = nRT ln
Vf

Vi

. (3.44)

For Vi < Vf , we have x = Vi/Vf < 1, W ∗/nRT = − lnx and W ∗
irr/nRT = 1 − x.

Since − lnx = ∫ 1
x

dx′/x′, 1−x = ∫ 1
x

dx′ and 1/x′ > 1 for 0 < x′ < 1, the inequality
− lnx > 1 − x holds, hence,

W ∗ > W ∗
irr. (3.45)

In both processes the initial and final states are the same, hence, the change in the
internal energy is also the same, and for the ideal gas it is �U = 0 because T

is constant. We see, however, that in the reversible isothermal process the work
performed by the system is greater than in the irreversible process. Although this
result has been obtained for the ideal gas, in Sect. 5.3.1 we show that it is a general
conclusion, which follows from the second law of thermodynamics.

3.6 Evaporation of Liquids

An example of a reversible process occurring at constant pressure and constant tem-
perature is evaporation of a liquid. We consider a vessel containing a liquid, which
is closed with a movable piston at the top. The temperature of the liquid is equal to
the ambient temperature. Then we shift the piston up slowly. The space that forms
above the liquid surface is filled with the vapour which is in thermodynamic equilib-
rium with the liquid; it is called saturated vapour. In order to reach thermodynamic
equilibrium between the liquid and vapour at the given temperature T , the exter-
nal pressure p must be equal to the saturated vapour pressure at this temperature.
When a small amount of heat is supplied to the system at constant pressure a certain
amount of the liquid evaporates, which is shown in Fig. 3.2. The volume of the sys-
tem increases but its temperature does not change. A new equilibrium state between
the vapour and liquid, with a greater amount of the vapour, is established.

We assume that the process of evaporation proceeds quasi-statically. The work
done in this process amounts to

W = −p(Vg − Vl), (3.46)

where Vg denotes the volume of the vapour formed from the liquid that has occupied
the volume Vl . The work W < 0 because the system increases its volume. At the
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Fig. 3.2 Liquid evaporates at constant external pressure, p, equal to the saturated vapour pressure
at a given temperature. When the heat Q is supplied to the system some molecules escape from the
liquid surface. Leaving the liquid, they perform the work W against the vapour pressure, due to col-
lisions with molecules present already in the vapour, which is marked with the arrows. An increase
in the vapour volume shifts the piston upward. The internal energy increases in the evaporation
process because the average distance between molecules grows and, in effect, the intermolecular
attraction weakens

same time the system absorbs the heat Q from the surroundings because molecules
to leave the surface of the liquid must increase their kinetic energy first. According
to the first law of thermodynamics, the change in the internal energy of the system
amounts to

�U = Q − p(Vg − Vc) ≈ Q − pVg, (3.47)

where we have neglected the volume of the liquid since Vg � Vl .
For example, to evaporate 1 mol of water at the temperature of 25 °C, 44 kJ of

heat needs to be supplied. The saturated vapour pressure at this temperature amounts
to 3.17 kPa. Assuming that water vapour can be approximated by the ideal gas, we
get for 1 mol of the vapour

pVg = RT ≈ 2.48 kJ.

Note that the work done by the system in the evaporation process is much smaller
than the heat supplied.

3.7 Chemical Reaction

If a chemical reaction occurs in a liquid or solid then the typical change in the vol-
ume caused by the reaction is of the order 0.01 L per mol, and the work performed
at the pressure of 1 atm is of the order 1 J per mol. The amount of heat released or
absorbed depends on the given reaction and it amounts from a few kilojoules to a
few hundred kilojoules. Thus, �U ≈ Q in chemical reactions because the energy
of chemical bonds is much larger than the work needed to change the volume of a
liquid, solid or gas. If gases participates in a reaction which occurs at constant pres-
sure, the ratio of the work performed to the heat released in the reaction amounts to
a few percent only.
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Fig. 3.3 Decomposition of 2 mol of liquid nitrogen trichloride into gaseous products. In the initial
state, the pressure in the liquid under the piston is equal to 1 atm, whereas the space above the
piston is empty (vacuum). In the final state, the whole volume of the vessel is filled with gaseous
products of the reaction at the pressure p = 1 atm. In the first process (left figure), the reaction
proceeds at constant pressure pext = 1 atm, maintained by the external force acting on the piston.
In the second process (right figure), the reaction proceeds at pext = 0 when the piston is released.
In both processes, the initial and final states are the same, hence, �U must also be the same

We consider the decomposition of 2 mol of liquid nitrogen trichloride into
gaseous products (Fig. 3.3):

2NCl3 → N2 + 3Cl2. (3.48)

The liquid reactant and gaseous products occupy the volume of 0.148 L and 97.9 L,
respectively, at the pressure of 1 atm and temperature of 25 °C. If we maintain the
system at constant pressure, for instance, the vessel containing the reactant is closed
with a piston, then the amount of heat Q∗

1 = −Q1 = 442 kJ is released and the work
W ∗

1 = −W1 = 9.9 kJ is done by the system. During the reaction the system performs
work, shifting the piston, and at the same time, it gives off a certain amount of heat
to the surroundings. The motion of the piston is caused by the gases produced in
the reaction and we know that the volume of the system at the end of the process
amounts to 97.9 L. Using the first law of thermodynamics, we conclude that the
internal energy has decreased by

�U = Q1 + W1 = −451.9 kJ. (3.49)

We can also determine the change in the internal energy in the case of the reaction
at the pressure pext = 0. Then, comparing with the previous case, we can calculate
what part of the change in the internal energy of the system comes from the work
performed during the reaction. In order to do so, we prepare a system of the volume
97.9 L at the temperature of 25 °C and pressure of 1 atm. Then we block the piston,
pomp out the air from above and then initiate the decomposition of NCl3 with an
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electric spark, for instance, releasing the piston at the same time. When the reaction
is completed the gaseous products occupy the whole volume of the vessel. The pres-
sure in the vessel amounts to 1 atm, and the temperature is equal to 25 °C. No work
has been done in the process since the force acting on the piston was equal to zero.
Measuring the heat released to the surroundings, we can determine the change in the
internal energy. The heat released in the process amounts to Q∗

2 = −Q2 = 451.9 kJ,
hence,

�U = Q2 = −451.9 kJ. (3.50)

The above example is illustrative of the fact that the internal energy is a state
function, thus, it does not depend on the process that brings the system to the final
state. In the first process, the heat Q∗

1 = 442 kJ is released to the surroundings and
the work W ∗

1 = 9.9 kJ is performed by the system. In the second process, the heat
Q∗

2 = 451.9 kJ is released, and the work W ∗ = 0. However, in both processes the
change in the internal energy is the same because the initial and final states are the
same.

Chemical reactions are usually studied at constant pressure, therefore, it is rather
inconvenient to use the internal energy for this purpose. We return to this point in
Part III.

3.8 Exercises

3.1 One mole of a monatomic ideal gas is maintained at constant pressure of 1 bar.
How much heat is to be supplied to the system to increase its volume from 20 L to
50 L?

3.2 Five moles of a monatomic ideal gas expand at constant external pressure of
1 atm. The initial gas pressure is equal to 2 atm, the initial temperature amounts to
25 °C, and the final temperature amounts to 20 °C. How much work is done by the
gas? What is the change in its internal energy? How much heat is transferred from
the surroundings to the system?

3.3 Two subsystems, of the volume 10 L and 2 L, respectively, contain an ideal gas
in thermodynamic equilibrium. The subsystems are separated from each other with
a piston. The gas temperature is constant and equal to 0 °C. The first subsystem
contains 10 mol of the gas. Then we increase twice the volume of the vessel with
the gas in a reversible isothermal process. Find the change in the internal energy and
the work performed by each subsystem. How much heat is supplied to the whole
system?

3.4 A system at constant volume V consists of three subsystems occupied by a
monatomic ideal gas. The subsystems are separated from one another with pistons.
The initial volume of individual subsystems amounts to V

(1)
i , V

(2)
i and V

(3)
i , re-

spectively. The initial temperature Ti and initial pressure pi have the same values
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in each subsystem. Then we change the temperature of each subsystem to the value
Tf . Find the change in the internal energy and volume, and the work performed, for
each subsystem. Find also the heat supplied to the whole system.

3.5 An ideal gas in thermodynamic equilibrium occupies three subsystems, of the
volume 1 L, 5 L and 10 L, respectively, separated from one another with pistons. In
all subsystems, the temperature is constant and equal to 0 °C, and the initial pressure
amounts to p = 1 atm. Then a certain amount of heat is supplied to the system in
a reversible isothermal process, which causes the volume of the first subsystem to
increase to the final value of 4 L. Assuming that the remaining subsystems are in
equilibrium with the first subsystem, calculate the work performed and the heat
supplied.

3.6 A gas satisfying the van der Waals equation of state

p = nRT/(V − nb) − an2/V 2,

with the internal energy

U = 3nRT/2 − an2/V,

where a and b are positive constants, expands adiabatically to the vacuum from the
initial volume Vi to infinite volume (Vf = ∞). The number of moles n is constant.
What work does the gas perform? How much heat is supplied to the system? What
is the change in its internal energy and temperature?

3.7 One mole of a monatomic ideal gas expands adiabatically against constant ex-
ternal pressure pext. The change in the gas temperature equals �T . Calculate the
work done by the gas and the change in its volume.

3.8 A monatomic ideal gas expands in a reversible adiabatic process. The initial
temperature of the gas amounts to Ti and the mole number is equal to n. The final
temperature Tf = Ti/4. Calculate the work done by the gas and the change in its
volume.

3.9 Calculate the final pressure of a monatomic ideal gas in a reversible adiabatic
process if the initial pressure pi = 1 bar, initial volume Vi = 500 cm3 and final
volume Vf = 2000 cm3.

3.10 Calculate the change in the internal energy of 1 mol of H2O in the process
of transformation of liquid water into vapour at the pressure of 1 atm. The heat of
evaporation amounts to 40670 J mol−1 and the molar volume of water vapour in
equilibrium with the liquid amounts to 30.6 L at 1 atm.

3.11 The reaction of ammonia formation from 3 mol of hydrogen and 1 mol of
nitrogen has the following form:

N2 + 3H2 → 2NH3.
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Knowing that during this (exothermic) reaction, which takes place at constant exter-
nal pressure pext = 1 atm, the system gives off 92 kJ of heat to the surroundings, cal-
culate the change in its internal energy. Calculate also the work done by the system,
assuming that hydrogen, nitrogen and ammonia are ideal gases. The temperature at
the beginning and at the end of the process amounts to 298 K.

3.12 Two isolated systems: (1) and (2), contain two different ideal gases whose
internal energies are given by, respectively,

U(1)(T ,V ,n) = 3

2
nRT,

U(2)(T ,V ,n) = 5

2
nRT .

The total internal energy of the systems is equal to U(1) + U(2) = 30 kJ, and the
amount of the gas in the systems is equal to n(1) = 2 mol and n(2) = 3 mol, re-
spectively. Then the systems are brought into contact with each other through a stiff
diathermal wall. Find the final values of the temperature and internal energy for each
system.

3.13 Two isolated systems, of the volume V each, contain a photon gas whose
internal energy U = γV T 4. The initial temperature of the photon gas is equal to
T (1) and T (2), respectively. Then the systems are brought into thermal contact with
each other through a stiff diathermal wall. Find the final temperature of the systems.

3.14 A metal block, of the mass of 1 kg, was heated to a temperature of 400 K and
then put into 0.3 kg of water. The temperature of water increased from 294 K to
300 K. Calculate the ratio of the specific heat of the metal and water, assuming that
they do not depend on temperature (specific heat is the heat capacity of 1 kg of a
substance). What properties of a substance determine its cooling capabilities?

3.15 The internal energy of n = 4 mol of a substance is given by the following
expression: U = AT V 3, where A = 10 J K−1 cm−9. Derive the formula for the in-
ternal energy of the substance for an arbitrary value of the mole number n.

3.16 U = aV T 4 for n = 2 mol, where a = 10 J K−4 cm−3. Derive the formula for
U for an arbitrary value of n.

3.17 An electric current of 1 A flows through a heating coil, connected to the volt-
age of 12 V, for 3000 s. The whole work of the electric current is transformed into
heat in the heating coil and used to warm up a certain substance by 5.5 K. What is
the heat capacity of the substance?

3.18 The equation of state of a certain gas has the following form:

pV

nRT
= 1 + nB(T )

V
,
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where the function B(T ) is positive at high temperatures and negative at low tem-
peratures. Calculate the work performed by the gas during a reversible isothermal
expansion, and compare it with the work of the ideal gas at the same temperature.

3.19 Calculate the work performed by a gas which satisfies the van der Waals equa-
tion of state

p = nRT

V − nb
− an2

V 2
,

during a reversible isothermal expansion. Compare it with the work performed by
the ideal gas under the same conditions. How do the constants a and b affect the
pressure and work? Do they increase or decrease these quantities compared to the
ideal gas case? Expand 1/(V − nb) in a power series of nb/V and compare the
resultant equation of state with the equation of state from Exercise 3.18.

3.20 The molar heat capacity at constant volume, cv , of a substance is given by the
formula

cv = A + BT,

where A and B are some constants. Calculate the change in the internal energy of
the substance in the process of isochoric heating from the temperature Ti to Tf .

3.21 The molar heat capacity at constant volume, cv , of a substance is given by the
formula

cv = A + BT − CT −2,

where A, B and C are some constants. Calculate the change in the internal energy
of the substance in the process of isochoric heating from the temperature Ti to Tf .

3.22 The heat capacity per unit volume, cv , for the photon gas is given by the fol-
lowing formula:

cv = 4γ T 3,

where γ is a constant. Calculate the change in the internal energy of the photon gas
contained in the volume V , in the process of isochoric heating from the temperature
Ti to Tf .

3.23 A vessel of the volume V contains a two-atomic ideal gas at the pressure pi

and temperature Ti . Calculate how much heat can be delivered to the vessel without
the risk of damaging it if the resistance of the walls amounts to p1. Substitute the
following data: V = 24 L, pi = 1 atm, Ti = 298 K, p1 = 100 atm. If the vessel
contained hydrogen its damage might have tragic consequences, since the reaction:
H2 + 1

2 O2 → H2O is explosive, that is, it proceeds very fast with a great amount of
heat released.
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3.24 A vessel of constant volume contains a monatomic ideal gas at constant tem-
perature T . We let �n moles of the gas out of the vessel. Calculate the change in
the internal energy of the system.

3.25 A monatomic ideal gas is contained in a vessel at constant pressure p and
constant temperature T . We let �n moles of the gas out of the vessel. Calculate
the change in the internal energy of the system, the work performed and the heat
supplied.



Chapter 4
Entropy and Irreversibility of Thermodynamic
Processes

4.1 Second Law of Thermodynamics

The second law of thermodynamics was formulated due to the observation of spon-
taneous processes occurring in nature. We know that water freezes in winter but
never in summer. Heat flows from a warmer body to a cooler body (Fig. 2.2). A
gas expands spontaneously, filling the whole vessel uniformly, when its pressure is
higher than the external pressure. We never observe molecules that collect sponta-
neously in one part of the vessel, leaving the remaining part empty (Fig. 2.1). These
examples show that some processes occur spontaneously and some other do not.
We are used to this fact so much that we do not even wonder why it happens like
that. When we push a block on a rough surface we observe a flow of heat to the
surroundings due to the friction (Fig. 2.6). Imagine now a hypothetical situation
that the heat given off to the surroundings flows back to the block and then it is
transformed somehow into mechanical work, which shifts the block to its original
position. Such a process would not violate the energy conservation principle, but we
know very well that it does not occur in nature. Why is it impossible to transform
chaotic motion of atoms of the substrate into ordered motion of the block? What
is behind the fact that some processes never occur in nature, even though they do
not violate the energy conservation principle? These and many other examples of
observation of various macroscopic systems indicate that there exists a fundamen-
tal law responsible for irreversibility of processes occurring in nature. The search
for the answers to such fundamental questions led to the formulation of the second
law of thermodynamics. Implications of this law go beyond our understanding of
the processes discussed above. They concern the problem of the very existence of
time and the arrow of time, giving a partial answer to the question why the flow of
time is unidirectional. The last problem is not discussed in this book, however. To
express in the language of thermodynamics the empirical fact that some processes
occur spontaneously, i.e., without an external agent, and some other do not, it is nec-
essary to introduce a new state function, called entropy, for which the symbol S is
usually used. Entropy is an extensive quantity, as are the internal energy U , volume
V , and the amount of substance n. For a pure homogeneous substance, such as gas,
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U , V and n uniquely define the state of the system in thermodynamic equilibrium.
Therefore, we can treat S as a function of these state parameters. For the time being,
we are not concerned with the determination of the entropy of a given system, but
only with its general properties.

The Second Law of Thermodynamics
There exists an extensive state function, called entropy, S, whose change in
an adiabatic process satisfies the inequality

�S ≥ 0,

where �S = 0 only if the process is reversible.

The second law of thermodynamics states only that entropy cannot decrease in
adiabatic processes. The statement that entropy never decreases is therefore incor-
rect. It is true only if heat cannot be transferred between the system and surround-
ings. We will see later that in the case of diathermal walls, an infinitesimal change
in the entropy of the system in a reversible process is proportional to the heat trans-
ferred to the system, and the proportionality coefficient is the inverse of its temper-
ature. This means that when heat is transferred from the system to the surroundings
in a reversible isothermal process the entropy of the system decreases.

Entropy is a well defined quantity for equilibrium states only. Let us assume that
we can determine the entropy of an adiabatically isolated system in two equilib-
rium states: A and B . If SB > SA, we can say, on the basis of the second law of
thermodynamics, that a spontaneous process from the state A to the state B is pos-
sible. Thermodynamics does not tell us how to realize such a process but it allows
to foresee whether a given process can occur spontaneously.

As an example, we consider an adiabatically isolated vessel with a movable pis-
ton. One part of the vessel is filled with a gas and the other part is empty (see
Fig. 3.1). There is no external force acting on the piston. Initially the piston is
blocked and the gas pressure is equal to pi . When the blockade is removed the
gas starts to expand and the expansion continues until a new equilibrium state, of
the pressure pf < pi , is reached. In the new state, the whole vessel is filled with
the gas. In this process, neither heat is transferred to the surroundings nor work is
performed by the system, which means that the state of the surroundings does not
change. The process is irreversible because in order to restore the system to its ini-
tial state an external agent is needed. We know intuitively that the gas will not return
to the initial state spontaneously. If we calculate the initial and final entropy of the
system we will find out that Sf > Si . We will come to the same conclusion if we
include a constant force acting on the piston, which exerts the pressure pext < pi

on the gas. Then the gas performs the work W ∗ = pext(Vf − Vi) on the surround-
ings (see Sect. 3.4.2). Let us assume that the surroundings can give back the whole
energy stored in them, by performing the work W = −W ∗ on the system. Since
the final gas pressure pf ≥ pext, the work W is too small to restore the system to
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its initial state. This is because the kinetic energy of the piston, which moves with
accelerated motion, is dissipated into the gas due to the internal friction (viscosity).

If an adiabatic process proceeds quasi-statically then the pressure exerted on the
piston by the gas is balanced by an external force acting on the piston. The direction
of the process can be reversed at any moment, therefore such a process is reversible.
According the second law of thermodynamics the entropy of the system does not
change during a reversible process, hence, Sf = Si . We showed in Sect. 3.4 that
in the ideal gas case, T and V satisfies the relation: T V 2/f = const for a quasi-
static adiabatic process (see (3.35)). Since the temperature is proportional to the
internal energy of the ideal gas, we can rewrite this relation as UV 2/f = const′. If
the entropy is to be constant in this process it must depend on U and V through the
variable UV 2/f . We will show this in Sect. 4.3.3, where we calculate the entropy of
the ideal gas.

Many conclusions concerning a given system can be drawn from the second law
of thermodynamics by the following reasoning. We consider the system and its di-
rect surroundings, with which it can interact, as one isolated system. Thus, our sys-
tem and its surroundings are subsystems of that system, to which we assign indices
(1) and (2), respectively. Since entropy is an extensive quantity, the total entropy of
the system, S, is a sum of the entropy of its subsystems, denoted S(1) and S(2). We
assume that initially the subsystems are isolated from each other and that both are
in thermodynamic equilibrium. Then we allow them to interact with each other, for
instance, by a transfer of heat. After some time a new equilibrium state of the whole
system is established. Since an isolated system is also an adiabatically isolated one,
the second law of thermodynamics applies to it. Therefore, the total change in the
entropy of the whole system must satisfy the inequality �S ≥ 0, hence

�S = �S(1) + �S(2) ≥ 0. (4.1)

In the case �S = 0, the system proceeds from the initial state to the final state
through a sequence of equilibrium states, i.e., the process is reversible. �S > 0
means that some irreversible changes have occurred in the system or surroundings.
In that case, the system and surroundings can be restored to their original states only
if some additional energy is supplied.

Often an additional assumption is made that the surroundings (subsystem (2))
is much larger than the original system (subsystem (1)). This means that any in-
teraction of the original system with the surroundings does not change practically
the intensive parameters of the surroundings. For instance, the heat capacity of the
surroundings is so large that any transfer of heat from the system to the surround-
ings does not change practically the temperature of the latter. Similarly, when the
system performs work on the surroundings by changing its volume, the pressure in
the surroundings does not change practically because of a great difference in the
volume of the system and surroundings. A system whose heat capacity and volume
can be considered infinite compared to those of any system studied is called a heat
and volume reservoir. The atmosphere is a good example of such a reservoir.
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4.1.1 Entropy Maximum Principle for Isolated Systems

Here we examine the consequences of the second law of thermodynamics in the case
of an isolated system composed of m subsystems, each of which is initially also an
isolated system. For simplicity, we assume that all subsystems contain the same pure
substance. The equilibrium state of each subsystem is defined by its internal energy
U(i), volume V (i) and mole number n(i), where i = 1, . . . ,m. Since the internal
energy, volume and amount of substance are extensive parameters, we obtain the
values of U , V and n for the composite system by summing up the contributions
from all subsystems, i.e.,

U =
m∑

i=1

U(i), (4.2)

V =
m∑

i=1

V (i), (4.3)

n =
m∑

i=1

n(i). (4.4)

We do the same with the entropy of the composite system, S, which is also an
extensive parameter, hence

S =
m∑

i=1

S(i)
(
U(i),V (i), n(i)

)
, (4.5)

where S(i) is the entropy of the ith subsystem.
Then we remove all internal walls between the subsystems, leaving only the

external walls which isolate the composite system from the surroundings. When
the internal constraints are removed a flow of energy and matter usually occurs in
the system, and the volume of the subsystems change. After some time the system
reaches a new equilibrium state. In this process, U , V and n do not change because
the system is isolated from the surroundings all the time. The entropy of the system
in the final state, Sf , depends only on U , V and n, i.e., Sf = S(U,V,n), and from
the second law of thermodynamics, it follows that

�S = S(U,V,n) −
m∑

i=1

S(i)
(
U(i),V (i), n(i)

) ≥ 0. (4.6)

Note that �S = 0 only if both the temperature and pressure had the same values in
all subsystems before the removal of the internal walls, otherwise, the entropy of
the composite system increases when the constraints are removed. From the above
considerations the following conclusion can be drawn.
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Entropy Maximum Principle
After the removal of internal constraints, present initially in an isolated sys-
tem, the system reaches an equilibrium state that corresponds to the maximum
of entropy on the set of all possible equilibrium states of the system with the
constraints.

By the system with the constraints we understand an isolated system composed
of subsystems isolated from one another with internal walls. Possible equilibrium
states of the system are defined by the extensive parameters: U(i), V (i), n(i), for
i = 1, . . . ,m, which satisfy conditions (4.2)–(4.4). The entropy of the composite
system

S
(
U(1), V (1), n(1), . . . ,U(m),V (m), n(m)

) =
m∑

i=1

S(i)
(
U(i),V (i), n(i)

)
, (4.7)

assumes the maximum value for a certain set of the state parameters: U
(i)
max, V

(i)
max,

n
(i)
max, i = 1, . . . ,m. It follows from the entropy maximum principle (which is a con-

sequence of the second law of thermodynamics) that this set of the state parameters
corresponds to the equilibrium state reached by the composite system after the re-
moval of the internal constraints.

Note that we do not have to remove all the internal constraints imposed on the
system. For instance, we can replace the walls that completely isolate the subsys-
tems from one another with diathermal walls. Then the volume and amount of sub-
stance in the subsystems do not change but the internal energy can change due to
the flow of heat. The entropy maximum principle holds also in such cases. After the
removal of some constraints, the system reaches a new equilibrium state that corre-
sponds to the maximum of entropy in the presence of the remaining constraints.

The entropy maximum principle can be easily extended to an arbitrary number
of components. Then condition (4.4) must be satisfied for each component.

4.2 Conditions of Thermodynamic Equilibrium

We show in this section that the conditions of thermodynamic equilibrium can be
derived from the entropy maximum principle. First, we discuss the condition of
thermal equilibrium, which leads to the thermodynamic definition of temperature
and the relation between entropy and heat.

4.2.1 Thermal Equilibrium

We consider an isolated system composed of two subsystem: (1) and (2), which
are initially isolated from each other. The equilibrium states of the subsystems are
defined by the extensive parameters U(i), V (i), n(i), i = 1,2, with the conditions:
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U = U(1) + U(2), (4.8)

V = V (1) + V (2), (4.9)

n = n(1) + n(2), (4.10)

where U , V and n are constant. The entropy of the composite system is a sum of
the entropy of its subsystems, i.e.,

S = S(1)
(
U(1), V (1), n(1)

) + S(2)
(
U(2), V (2), n(2)

)
. (4.11)

Then the subsystems are brought into thermal contact through a rigid diathermal
wall. The system reaches a new equilibrium state, and the internal energy of the
subsystems changes, in general; due to condition (4.8) we have

dU(1) = −dU(2). (4.12)

Since

dS(i) =
(

∂S(i)

∂U(i)

)

V (i),n(i)

dU(i), (4.13)

the change in the entropy of the system due to an infinitesimal transfer of energy
amounts to

dS = dS(1) + dS(2) = [
s(1)
u

(
u(1), v(1)

) − s(2)
u

(
u(2), v(2)

)]
dU(1), (4.14)

where

s(i)
u

(
u(i), v(i)

) =
(

∂S(i)

∂U(i)

)

V (i),n(i)

(4.15)

and relation (4.12) was used. The quantity s
(i)
u is an intensive state function, as

a derivative of an extensive state function (entropy) with respect to an extensive
parameter (internal energy), therefore it depends only on the molar quantities: u(i) =
U(i)/n(i) and v(i) = V (i)/n(i).

From the entropy maximum principle, we know that the equilibrium state reached
by the system after the removal of the internal constraints corresponds the maximum
of the entropy S. In the case considered, the volume of the subsystems and the mole
numbers do not change, and the only independent parameter is U(1). The necessary
condition for the maximum (or minimum) of a function is that its first derivative
vanishes, hence the condition dS = 0 follows. Using this condition in (4.14), we
find that the subsystems (1) and (2) are in thermal equilibrium with each other if

s(1)
u

(
u(1), v(1)

) = s(2)
u

(
u(2), v(2)

)
. (4.16)

This means that relation (4.15) defines an intensive parameter which has the same
value for the systems in thermal equilibrium. On the other hand, we already know
from the zeroth law of thermodynamics that such a property has temperature (see
Sect. 2.3.2), i.e.,

t (1) = t (2), (4.17)
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where t (i) denotes the empirical temperature of the ith subsystem. Thus, relation
(4.15) can be used as a thermodynamic definition of temperature, called the thermo-
dynamic temperature, for which we use the symbol T .

This statement does not mean, however, that the thermodynamic temperature of
the ith subsystem is equal to s

(i)
u , as we must take into account the convention used

for ages that heat flows from the body of a higher temperature to the body of a
lower temperature. To include this condition, we assume that the initial empirical
temperatures of the subsystems were slightly different, and after the subsystems
were brought into thermal contact, the internal energy of the subsystem (1) has
increased slightly by �U(1) > 0. Because of (4.13) and (4.15) the change in the
entropy of the ith subsystem amounts to

�S(i) ≈ s(i)
u �U(i), (4.18)

where �U(2) = −�U(1). In the process considered, �U(1) = Q, where Q > 0 de-
notes the heat transferred from the subsystem (2) to the subsystem (1). According
to the second law of thermodynamics, the change in the entropy of the whole system
equals

�S ≈ (
s(1)
u − s(2)

u

)
Q > 0, (4.19)

since the process is irreversible. Because the heat flows from (2) to (1) we conclude
that the higher temperature corresponds to the subsystem (2). Note that inequality
(4.19) is satisfied if we assume s

(i)
u = 1/T (i), since s

(1)
u > s

(2)
u for T (1) < T (2).

To summarize, we have shown that the following definition of the thermodynamic
temperature:

1

T (i)
=

(
∂S(i)

∂U(i)

)

V (i),n(i)

, (4.20)

satisfies both the condition of equal temperatures in the state of thermal equilib-
rium and the condition that the flow of heat occurs in the direction of decreasing
temperature.

In Sect. 2.3.2, we introduced the absolute temperature as a positive quantity, on
the basis of the ideal gas equation of state (see (2.27)). We notice that in order the
thermodynamic temperature is consistent with the absolute temperature in this re-
spect, we have to postulate that entropy is a monotonically increasing function of the
internal energy of an isolated system at constant volume and at a constant mole num-
ber. If it was not so the thermodynamic temperature could assume negative values.
However, only the mechanical-statistical definition of entropy given by Boltzmann:

S = kB lnW, (4.21)

provides theoretical justification of this postulate. The quantity W denotes the num-
ber of all possible microscopic realizations (microstates) of a macroscopic isolated
system in thermodynamic equilibrium, which are consistent with its parameters of
state: U , V and n. If the state corresponding to the lowest internal energy is not de-
generate then W = 1 and the entropy S = 0. It can be shown that W grows quickly
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when the internal energy of the system increases, which means that also its entropy
increases. The coefficient kB is called the Boltzmann constant and it is equal to the
ratio of the gas constant R and the Avogadro constant NA:

kB = R

NA

= 1,380 6504 (24) × 10−23 J K−1. (4.22)

Relation Between a Reversible Flow of Heat and Entropy We have shown that
if two subsystems of an isolated system are in thermal equilibrium then an infinites-
imal transfer of energy between the subsystems does not change the entropy of the
whole system (see (4.14) and (4.16)), which means that it proceeds in a reversible
way. On the other hand, the entropy of each subsystem changes in accord with rela-
tion (4.13). In the case discussed above, the energy is transferred in the form of heat.
We denote by d̄Q the infinitesimal amount of heat transferred from the subsystem
(2) to the subsystem (1), hence, dU(1) = d̄Q and dU(2) = −d̄Q. Using relations
(4.13) and (4.20) for i = 1, we get

dS(1) = 1

T
d̄Q, (4.23)

where T = T (1) = T (2). For the subsystem (2), we obtain a similar expression but
the sign changes, i.e., dS(2) = −d̄Q/T .

Now we can treat the subsystem (1) as the system of our interest and the subsys-
tem (2) as its surroundings. Omitting the index (1), we rewrite (4.23) as

dS = 1

T
d̄Q. (4.24)

This result means that if the system is in thermal equilibrium with the surround-
ings at the temperature T then the infinitesimal transfer of heat, d̄Q, between the
system and surroundings proceeds in a reversible way, and the entropy of the sys-
tem changes in accord with (4.24). As we know, a reversible process is quasi-static.
A transfer of heat proceeds quasi-statically if during the process we control the tem-
perature of the surroundings to be equal to the temperature of the system. Similarly,
in the case of quasi-static work, we adjust the pressure in the surroundings to be
equal to the pressure in the system. According to the first law of thermodynamics,
we have (see (3.5))

dU = d̄Q − pdV (4.25)

in a quasi-static process at a constant mole number. Substituting d̄Q from relation
(4.24), we obtain

dU = T dS − pdV. (4.26)

This relation means that the internal energy of the system is a function of its en-
tropy and volume, at a constant mole number. Due to the postulate that entropy is a
monotonically increasing function of the internal energy, we can invert the relation
between the internal energy and entropy. Then S becomes a function of U and V , at
constant n, and (4.26) can be expressed as follows:

dS = 1

T
dU + P

T
dV. (4.27)
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Relation (4.26) results from the combination of the first law of thermodynamics
(Eq. (4.25)) with the expression for a quasi-static flow of heat, d̄Q = T dS, which is
a consequence of the second law. Now it is easy to show that any quasi-static process
must be reversible. In a quasi-static adiabatic process, d̄Q = 0 by definition, hence,
dS = d̄Q/T = 0. Since the entropy does not change, the process is reversible. If
a quasi-static process is not adiabatic we can include the surroundings, to form an
isolated composite system together with our system. Then any quasi-static process
in our system is a quasi-static adiabatic process in the composite system, therefore,
it is a reversible process.

4.2.2 Mechanical Equilibrium

We show below that the condition of mechanical equilibrium can also be derived
from the entropy maximum principle. As in Sect. 4.2.1, we consider an isolated
system composed of two subsystems which are initially isolated from each other.
Then we bring the subsystems into mechanical and thermal contact through a mov-
able diathermal wall. The numbers of moles in the subsystems are constant but the
internal energy and volume can change. From conditions (4.8) and (4.9), we have:

dU(1) = −dU(2), (4.28)

dV (1) = −dV (2). (4.29)

Applying (4.27) to the subsystems, we derive the following expression for the dif-
ferential of the entropy of the composite system:

dS = dS(1) + dS(2) =
(

1

T (1)
− 1

T (2)

)
dU(1) +

(
p(1)

T (1)
− p(2)

T (2)

)
dV (1), (4.30)

where T (i) and p(i) denote, respectively, the temperature and pressure in the ith
subsystem. After the removal of the constraints, the composite system reaches a
new equilibrium state corresponding to the maximum of entropy. Since dU(1) and
dV (1) are independent quantities, the following relations result from the condition
dS = 0:

T (1) = T (2), (4.31)

p(1) = p(2). (4.32)

They express equality of temperatures (thermal equilibrium) and pressures (mechan-
ical equilibrium).

4.2.3 Equilibrium with Respect to the Matter Flow

As before, we consider an isolated system composed of two subsystems, isolated
initially from each other. Then we bring them into contact through a rigid diather-
mal wall which is permeable to matter. We can realize this by making tiny holes in
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the wall, by which the molecules can get across. For simplicity, we consider only
molecules of one kind, but the reasoning used can be easily extended to an arbitrary
number of components. In such a case, we have to assume that the walls are per-
meable to molecules of one component but impermeable to molecules of all other
components. After the removal of the internal constraints the volume of the subsys-
tems does not change but heat and matter can flow from one subsystem to the other.
From conditions (4.8) and (4.10), we get

dU(1) = −dU(2), (4.33)

dn(1) = −dn(2). (4.34)

The entropy of the ith subsystem, S(i), is a function of the internal energy U(i),
volume V (i), and mole number n(i). Since the volume of the subsystems is constant,
we have

dS(i) =
(

∂S(i)

∂U(i)

)

V (i),n(i)

dU(i) +
(

∂S(i)

∂n(i)

)

U(i),V (i)

dn(i). (4.35)

We know already that the derivative of entropy withe respect to the internal energy
is equal to 1/T (i). The derivative with respect to the mole number is denoted as

(
∂S(i)

∂n(i)

)

U(i),V (i)

= −μ(i)

T (i)
, (4.36)

where μ(i) is called the chemical potential. As temperature and pressure, the chem-
ical potential is an intensive parameter of state. Now the differential of the entropy
of the composite system adopts the following form:

dS = dS(1) + dS(2) =
(

1

T (1)
− 1

T (2)

)
dU(1) −

(
μ(1)

T (1)
− μ(2)

T (2)

)
dn(1). (4.37)

After the removal of the internal constraints the system reaches a new equilibrium
state that corresponds to the maximum of its entropy. Using the condition dS = 0
and the fact that dU(1) and dn(1) are independent quantities, we conclude that the
subsystems are in equilibrium with each other if

T (1) = T (2), (4.38)

μ(1) = μ(2). (4.39)

The first equality expresses the condition of thermal equilibrium. If also the chem-
ical potentials are equal then an infinitesimal amount of matter can flow from one
subsystem to the other in a reversible way. This means that the subsystems are in
equilibrium with respect to the matter flow.

Let us assume now that before the internal constraints were removed the temper-
atures of the subsystems were equal: T (1) = T (2) = T , but the chemical potentials
differed slightly. Proceeding in a similar way as in the case of the heat flow, we
express the change in the entropy of the ith subsystem after the removal of the con-
straints as follows:

�S(i) ≈ −μ(i)

T
�n(i), (4.40)
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hence

�S ≈ −μ(1) − μ(2)

T
�n(1), (4.41)

where we have used (4.10). Suppose now that initially μ(1) > μ(2). Since the process
is irreversible, �S > 0 and we conclude that �n(1) < 0. This means that the matter
flows from the subsystem (1), of a higher chemical potential, to the subsystem (2),
of a lower chemical potential.

4.3 Entropy as a Function of State Parameters

4.3.1 Fundamental Relation of Thermodynamics

Our consideration concerning composite systems have been based on the assump-
tion that we know the entropy of the subsystems as a function of the extensive pa-
rameters: the internal energy, volume and mole number. Application of the entropy
maximum principle to an isolated system led us to the conditions of thermodynamic
equilibrium and allowed to determine the intensive parameters related to each type
of equilibrium: thermal, mechanical and with respect to the matter flow. In this sec-
tion, we concentrate on simple systems, by which we mean uniform systems without
any internal constraints. A gas in a vessel without internal walls can serve as an ex-
ample of such a simple system. For simplicity, we consider only one-component
systems. If a given simple system is isolated from the surroundings then its equi-
librium state is completely defined by the internal energy U , volume V , and the
amount of substance n. From the point of view of thermodynamics, complete infor-
mation about the system is contained in the relation between its entropy S, and U ,
V and n, which is called the fundamental relation. The fundamental relation can be
expressed as

S = S(U,V,n), (4.42)

i.e., in the form of a functional dependence of the entropy on the internal energy,
volume and amount of substance. The infinitesimal change in the entropy (its dif-
ferential) has the following form (see (4.27) and (4.36)):

dS = 1

T
dU + p

T
dV − μ

T
dn, (4.43)

where
(

∂S

∂U

)

V,n

= 1

T
, (4.44)

(
∂S

∂V

)

U,n

= p

T
, (4.45)

(
∂S

∂n

)

U,V

= −μ

T
. (4.46)
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Due to the monotonic dependence of the entropy on the internal energy, Eq. (4.42)
can be solved with respect to U for any S, at constant V and n. This leads to an
alternative form of the fundamental relation:

U = U(S,V,n), (4.47)

where S, V and n are the independent state parameters. The expression for dU

results from a simple transformation of (4.43), i.e.,

dU = T dS − pdV + μdn, (4.48)

hence
(

∂U

∂S

)

V,n

= T , (4.49)

(
∂U

∂V

)

S,n

= −p, (4.50)

(
∂U

∂n

)

S,V

= μ. (4.51)

Comparing (4.48) with the expression: dU = d̄Q + d̄W + d̄Z (see (3.4)), we find
that

d̄Q = T dS, d̄W = −pdV, d̄Z = μdn. (4.52)

We already know the first two contributions to dU as the quasi-static heat and work.
The third contribution, related to the flow of matter, is the quasi-static chemical
work. Equation (4.51) is the formal definition of the chemical potential μ. In prac-
tice, it is not very useful because it is rather difficult to control the entropy if a
transfer of matter between the system and surroundings is possible. In a reversible
adiabatic process, dS = 0 because d̄Q = 0. However, it is difficult to realize such
a process if the walls are permeable to molecules which also carry some energy.
In Sect. 4.2.3, we showed that a reversible flow of matter between the system and
surroundings requires that their temperatures and chemical potentials are equal. In
the next chapter, we provide a more practical definition of the chemical potential.

4.3.2 Euler Relation

Since S, U , V and n are extensive parameters, they are proportional to the mass of
the system (see Sects. 2.1.2 and 2.4.4). This means that if U , V and n are multiplied
by an arbitrary positive factor m, the entropy S is multiplied by the same factor, i.e.,

S(mU,mV,mn) = mS(U,V,n). (4.53)

Substituting m = 1/n, we get

S(U,V,n) = nS(U/n,V/n,1) = ns(u, v), (4.54)
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where u = U/n and v = V/n are the molar internal energy and molar volume,
respectively, and s(u, v) = S(u, v,1) denotes the molar entropy. Substituting (4.54)
into (4.44) and (4.45), we note that the dependence on n cancels out, hence

(
∂S

∂U

)

V,n

=
(

∂s

∂u

)

v

= 1

T
, (4.55)

(
∂S

∂V

)

U,n

=
(

∂s

∂v

)

u

= p

T
, (4.56)

and

ds = 1

T
du + p

T
dv. (4.57)

Alternatively, we can treat u as a function of s and v: u = u(s, v), and from (4.57),
we get

du = T ds − pdv. (4.58)

Note that we can also derive relations (4.57) and (4.58) directly from (4.43) and
(4.48), substituting n = 1 and replacing S, U and V with s, u and v, respectively.

Intuitively, it is rather obvious that the properties of a uniform macroscopic sys-
tem in thermodynamic equilibrium should not depend on its mass. Therefore, the
fundamental relation in the form s = s(u, v) or u = u(s, v) should contain the whole
essential information about the system, because the dependence on n can be taken
into account in a simple way by (4.54). On the other hand, the reader may be con-
cerned about the fact that the chemical potential has disappeared from our consid-
eration. To explain this, we differentiate both sides of relation (4.53) with respect to
m and substitute m = 1 at the end. Using relations (4.44)–(4.46), we get

1

T
U + p

T
V − μ

T
n = S, (4.59)

hence

U = T S − pV + μn. (4.60)

Identity (4.60) is called the Euler relation. It is simply a consequence of the fact that
S, U , V and n are extensive parameters. Dividing the Euler relation by n, we obtain
the following expression for the chemical potential:

μ = u − T s + pv. (4.61)

If we choose u and v to be independent variables then

μ(u, v) = u − s(u, v)T (u, v) + vp(u, v). (4.62)

Alternatively, we can take s and v as independent variables and then μ = μ(s, v).
In many practical problems, T and p are treated as independent parameters of

state, instead of u and v or s and v. In the next chapter, we show how to exchange the
roles of independent and dependent variables without any loss of information about
a thermodynamic system. We also show that the chemical potential can be treated
as a function of temperature and pressure. Thus, in a one-component system, the
chemical potential is not an independent parameter but has a definite value for given
values of temperature and pressure.



70 4 Entropy and Irreversibility of Thermodynamic Processes

4.3.3 Entropy of the Ideal Gas

To give an example of the fundamental relation s = s(u, v), we calculate the entropy
of the ideal gas, using expression (4.57). We recall that the ideal gas is defined by
the following equations of state (see Sects. 2.4.1 and 2.4.4):

pv = RT, (4.63)

u = f

2
RT, (4.64)

where f denotes the number of degrees of freedom of a single molecule; for in-
stance, f = 3 for monatomic molecules. In (4.57), u and v are the independent
variables, therefore we have to express 1/T and p/T as their functions. From
Eqs. (4.63) and (4.64), we get

p

T
= R

v
, (4.65)

1

T
= f R

2u
, (4.66)

and substituting these relations into (4.57), we obtain

ds = 1

2
f R

du

u
+ R

dv

v
. (4.67)

Note that du/u = d ln(u/u0), and similarly, dv/v = d ln(v/v0), where u0 and v0 are
some constants. Finally, s(u, v) for the ideal gas has the following simple form:

s = s0 + f

2
R ln

u

u0
+ R ln

v

v0
, (4.68)

where s0 = s(u0, v0). The constants s0, u0, v0 define the reference state, which can
be arbitrarily chosen. The molar entropy has the same physical dimension as the
gas constant, i.e., J K−1 mol−1. Because of the relation between entropy and the
thermodynamic temperature (see (4.55)) the value of s depends on the choice of the
temperature unit. For instance, if we increased the unit of temperature by a factor
of 10 then the value of temperature expressed in the new units would decrease 10
times and the value of the gas constant would increase by the same factor. This
results from equations of states (4.63) and (4.64), in which temperature appears in
the product RT . We also notice that since s is constant in a reversible adiabatic
process, the equation of the adiabat: uv2/f = const, follows from expression (4.68),
which is to be compared with (3.35).

Using equations of state (4.63) and (4.64), we can express the molar entropy of
the ideal gas as a function of temperature and pressure:

s = s0 + 1

2
(f + 2)R ln

T

T0
− R ln

p

p0
, (4.69)
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where T0 = 2u0/f R, p0 = RT0/v0. If we then substitute (4.69) into (4.61) and use
the equations of state again we obtain the following expression for the chemical
potential of the ideal gas as a function of T and p:

μ = μ0
T

T0
− 1

2
(f + 2)RT ln

T

T0
+ RT ln

p

p0
, (4.70)

where μ0 = μ(T0,p0) = [(f + 2)R/2 − s0]T0. It is easy to verify that the following
relations hold:

(
∂μ

∂T

)

p

= −s, (4.71)

(
∂μ

∂p

)

T

= v. (4.72)

Although we have derived them for the ideal gas, we show in the next chapter that
they are true in general.

4.3.4 Relation Between Entropy and Heat Capacity

We recall first the definition of the heat capacity given in Sect. 3.2.1:

CX =
(

d̄Q

dT

)

X

, (4.73)

where X denotes the state parameter which is constant during the process. Rela-
tion (4.73) can also be expressed as d̄Q = CXdT , for a process at constant X. If
heat is transferred between the system and surroundings reversibly then d̄Q = T dS.
Assuming that T , X and n are the state parameters of the system considered, we get

dS =
(

∂S

∂T

)

X,n

dT +
(

∂S

∂X

)

T ,n

dX +
(

∂S

∂n

)

T ,X

dn. (4.74)

For a process at constant X and n (closed system), only the first term on the right-
hand side remains. Comparing the two expressions for d̄Q, we obtain

CX = T

(
∂S

∂T

)

X,n

. (4.75)

Usually we are interested in the molar heat capacity:

cX = T

(
∂s

∂T

)

X

. (4.76)

In particular, the heat capacity at constant volume, cv , and at constant pressure, cp ,
is given, respectively, by

cv = T

(
∂s

∂T

)

v

, (4.77)

cp = T

(
∂s

∂T

)

p

. (4.78)
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For the ideal gas, we substitute s in the form given by (4.68) (with u = f RT/2) or
by (4.69), which gives cv = f R/2 and cp = (f/2 + 1)R (cf. (3.13) and (3.25)).

4.4 Changes in Entropy in Reversible Processes

The second law of thermodynamics not only postulates existence of entropy but also
provides practical means for calculations of its changes. In the case of reversible pro-
cesses, the entropy of the system can change only if the system interacts thermally
with the surroundings, which follows from the relation

d̄Q = T dS. (4.79)

In an adiabatic process, d̄Q = 0, hence also dS = 0.

4.4.1 Isothermal Process

It is easy to determine the change in the entropy in a reversible isothermal process
(T = const). An example of such a process is the isothermal expansion of a gas due
to the heat supplied. When the process occurs at constant temperature we get, from
relation (4.79),

�S = Q

T
, (4.80)

where Q denotes the heat supplied to the system. �S > 0 if the system absorbs heat
and �S < 0 if heat is given off by the system. In the case of the ideal gas, the heat
absorbed or given off by the system in a reversible isothermal process is given by
expression (3.41), hence the change in the entropy amounts to

�S = nR ln
Vf

Vi

, (4.81)

where Vi and Vf denote the initial and final volume of the gas, respectively.
In general, we have (see (4.43))

dS = 1

T
dU + P

T
dV (4.82)

for a closed system (n = const). If we assume the temperature and volume as the
independent state parameters, then the internal energy U = U(T ,V ) and

dS = 1

T

(
∂U

∂T

)

V

dT + 1

T

[(
∂U

∂V

)

T

+ p

]
dV. (4.83)

In a isothermal process dT = 0, hence

dS = 1

T

[(
∂U

∂V

)

T

+ p

]
dV. (4.84)
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To calculate the change in the entropy, we have to know the dependence of the
internal energy on the volume. In the case of the ideal gas, U depends only on the
temperature and a p/T = nR/V , hence

dS = nR

V
dV. (4.85)

Integrating over V from Vi to Vf , we arrive at (4.81). It is just another way of deriva-
tion of the same result, in which we use directly the form of the entropy differential.
We can also obtain (4.81) directly from the expression for the molar entropy of the
ideal gas derived previously (see (4.68)).

4.4.2 Isochoric and Isobaric Processes

We assume again a closed system. If we take T and V as the independent parameters
of state then

dS =
(

∂S

∂T

)

V

dT +
(

∂S

∂V

)

T

dV. (4.86)

In an isochoric process, dV = 0 and the derivative of entropy with respect to temper-
ature can be expressed in terms of the heat capacity at constant volume (see (4.75)
and (4.77)), hence

dS = ncv

T
dT , (4.87)

where cv is a function of T and the molar volume v. Integrating from the initial
temperature Ti to the final temperature Tf , we arrive at the following expression:

�S = n

∫ Tf

Ti

cv(T , v)

T
dT . (4.88)

In particular, if cv is independent of temperature, as in the case of the ideal gas, or
the dependence on temperature can be neglected in a given temperature range, then

�S = ncv ln
Tf

Ti

. (4.89)

In the case of a reversible isobaric process, we proceed in a similar way. We treat
entropy as a function of temperature and pressure, hence

dS =
(

∂S

∂T

)

V

dT +
(

∂S

∂p

)

T

dp. (4.90)

In the isobaric process, dp = 0, hence

dS = ncp

T
dT , (4.91)



74 4 Entropy and Irreversibility of Thermodynamic Processes

where we have used (4.75) and (4.78). The change in the entropy of the system in a
reversible isobaric process amounts to

�S = n

∫ Tf

Ti

cp(T ,p)

T
dT , (4.92)

and if the dependence of cp on temperature can be neglected then

�S = ncp ln
Tf

Ti

. (4.93)

4.4.3 Evaporation of Liquids

We consider evaporation of a liquid, for instance, water. If at the temperature
T = 373.15 K (100 °C) and pressure of 1 atm we supply the heat Q = 40.66 kJ
in a reversible process, then 1 mol of liquid water changes into water vapour. The
entropy of the system consisting of liquid water and its vapour, Ssys, increases by
�Ssys = Q/T = 109 J K−1. Since the process is reversible, the total entropy of
the system and surroundings (from which the heat Q is drawn) does not change
(�Ssys + �Ssur = 0), hence �Ssur = −109 J K−1. This trick is often used to deter-
mine how the entropy of a given system or its surroundings has changed. If we treat
the given system together with its surroundings as one isolated system, then the total
entropy of that isolated system cannot decrease in any process, and in the case of a
reversible processes, it does not change.

Trouton noticed that the change in the molar entropy of a substance in the pro-
cess of evaporation is approximately equal to 85 J mol−1 K−1 for many substances,
e.g., cyclohexane, bromine, benzene, carbon tetrachloride or hydrogen sulphide. If
we know the boiling point of a liquid it is usually possible to estimate the heat of
evaporation for that liquid from the Trouton rule. The rule is not general, as it does
not apply to water, for instance. Nevertheless, it can be used even in this case as a
rough estimate. What is the main reason that the entropy of the system increases in
the process of evaporation? Substantial contribution comes from the increase in the
system volume due to the change of the liquid into vapour. As we know, one mole
of liquid water occupies the volume of 18 cm3. If we approximate water vapour by
the ideal gas then, at the temperature of 373.15 K and pressure of 1 atm, we obtain
the molar volume of 30.6 L mol−1. When 1 mol of water evaporates completely the
change in its entropy can be determined from expression (4.81). For the data given
above, we obtain �S ≈ 62 J K−1 mol−1. This example shows that in the process of
water evaporation, the change in its molar volume is responsible for about 50 % of
the total change in its entropy. It should be added, however, that water is a special
substance with a high boiling point and a low melting point, at a very small mo-
lar mass. When a typical substance evaporates, the change in its entropy due to the
change in the molar volume is even greater in proportion to the total change in the
entropy of the system than in the case of water.
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Fig. 4.1 Operation principle of the Carnot engine. The arrows show the direction of the energy
flow in the form of heat and work, for T1 > T2. The system performs the work W ∗ at the expense
of a part of the heat received, Q1, and the rest of that heat, Q∗

2, is transferred to the radiator

4.5 Heat Devices

Heat devices utilize the heat drawn from the surroundings to perform useful work
or utilize the work supplied to force the flow of heat in the direction of increasing
temperature. Operation of heat devices is based on thermodynamic processes that
proceed cyclically. The process is called a cycle if the final state of the system is
identical to the initial state. A thermostat is a system in thermodynamic equilibrium
with the property that a finite amount of heat drawn from it or supplied to it does
not change its temperature. In other words, a thermostat is a heat reservoir (see
Sect. 4.1). When a system absorbs a small amount of heat, Q, at constant volume,
its temperature changes by �T ≈ Q/(ncv). In the case of a thermostat, n → ∞
and �T → 0, which means that its size is considered infinite compared to the size
of any system interacting with it. We recall once more that Q and W denote the
heat supplied to a system and work done on the system, whereas Q∗ = −Q and
W ∗ = −W denote, respectively, the heat given off and the work done by the system.

4.5.1 Heat Engine and the Carnot Cycle

A heat engine consists of three basic components: a heat reservoir (in the car, heat
comes from the combustion of petrol or another fuel), a working substance that
performs work (e.g., a gas in a cylinder with a movable piston) and a radiator. Here
we consider the operation of an idealized heat engine in which one thermostat, of the
temperature T1, serves as a heat reservoir, and another thermostat, of the temperature
T2 < T1, serves as a radiator. The working substance in the engine forms the system
which interacts with the thermostats and performs work. The principle of operation
of such an engine is shown schematically in Fig. 4.1. The system receives the heat
Q1 from the thermostat at the temperature T1 in a reversible isothermal process.
A part of that heat is used by the system to perform the work W ∗ = −W > 0,
and the rest of it, denoted Q∗

2 = −Q2 > 0, is transferred to the thermostat at the
temperature T2, again in a reversible isothermal process. The full cycle consists of
the following reversible processes.
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Fig. 4.2 Carnot cycle consists of four reversible processes: two isothermal processes (1 and 3)
and two adiabatic processes (2 and 4), whose directions are marked with arrows. (a) Carnot cycle
in the variables S and T . Si = S(T1,V1) denotes the entropy of the system in the initial state at
the temperature T1 and volume V1. �S1 = Q1/T1 is the change in the entropy of the system in
the isothermal process at T = T1. Since the change in the entropy in the whole cycle equals zero,
�S2 = Q2/T2 = −�S1 in the isothermal process at T = T2. (b) Carnot cycle in the variables T

and V ; V1, V2, V3 and V4 denote the initial volume of the system in the consecutive processes

1. Isothermal expansion at the temperature T1; the volume increases from V1 to V2,
and the entropy increases by �S1 = Q1/T1 (see (4.80)).

2. Adiabatic expansion (�S = 0); the volume increases from V2 to V3, and the
temperature decreases from T1 to T2.

3. Isothermal compression at the temperature T2; the volume decreases from V3 to
V4, and the entropy decreases by �S2 = Q2/T2.

4. Adiabatic compression (�S = 0); the volume decreases from V4 to V1 and the
temperature increases from T2 to T1.

The engine operating as described above is called the Carnot engine. Figure 4.2
presents the cycle of the Carnot engine (Carnot cycle) on two diagrams. In Fig. 4.2a,
the independent variables are: the entropy S and temperature T . This diagram is par-
ticularly simple because the isothermal processes are represented by the horizontal
lines (isotherms), and the adiabatic processes are represented by the vertical lines
(adiabats). Figure 4.2b shows the Carnot cycle in the variables T and V . In this
figure, the isotherms are horizontal lines but the shape of the adiabats is different.
When a full cycle is completed the system returns to its initial state, and since en-
tropy is a state function, �S = 0. On the other hand, �S is equal to the sum of the
changes in the entropy in the isothermal processes, because entropy does not change
in reversible adiabatic processes, hence �S = �S1 + �S2 = 0 and we arrive at the
following relation:

Q1

T1
+ Q2

T2
= 0. (4.94)

Engine Efficiency An important quantity that can be easily determined for the
Carnot cycle is the engine efficiency ηe. It is a dimensionless quantity defined as the
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ratio of the work W ∗ performed by the engine on the surroundings to the heat Q1
received from the heat reservoir:

ηe = W ∗

Q1
. (4.95)

The more work the engine performs from a given amount of the heat received, the
greater its efficiency is. Since the internal energy is also a state function, it does not
change in the whole cycle (�U = 0). On the other hand, �U for the whole cycle is
equal to the sum of the changes in U in the consecutive processes. In the isothermal
process at the temperature T1, the system (working substance) absorbs the heat Q1,
and in the isothermal process at the temperature T2, it gives off the heat Q∗

2 = −Q2.
The system performs work both in the isothermal and adiabatic processes because
its volume changes, and the total work performed during the whole cycle is equal to
W ∗ = −W . Summing up all contributions to �U , we get:

�U = Q1 + W + Q2 = 0. (4.96)

This identity can also be written as

Q1 = W ∗ + Q∗
2, (4.97)

which expresses simply the energy conservation principle for the system and sur-
roundings. The total energy transferred from the system to the surroundings in the
form of work W ∗ and heat Q∗

2 must be equal to the heat Q1 supplied to the system.
Relation (4.94), derived from the second law of thermodynamics, can be expressed
in the convenient form:

Q2

Q1
= −T2

T1
. (4.98)

Dividing (4.97) by Q1 and using (4.98), we get, from definition (4.95), the following
expression for the efficiency of the Carnot engine:

ηe = 1 − T2

T1
. (4.99)

It is the maximum efficiency of any engine that works between two thermostats
characterized by the temperatures T1 and T2. This is because the Carnot cycle con-
sists of reversible processes. We will show in the next chapter that the maximum
work done by the system from a given amount of heat supplied corresponds to a re-
versible process. We conclude from expression (4.99) that the lower the temperature
of the radiator, T2, relative to the temperature of the heat reservoir, T1, the greater
the efficiency the Carnot engine works with, and in the limit T2 → 0 the efficiency
ηe → 1.

4.5.2 Efficiency of the Carnot Cycle and Thermodynamic
Temperature

Note that expression (4.99) can serve as a definition of the thermodynamic temper-
ature because it provides a method of its measurement. Measuring the work per-
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formed by the Carnot engine and the heat supplied to it, we can determine the ratio
of any two temperatures independently on the working substance used in the engine.
A question may be raised whether the thermodynamic temperature used in formula
(4.99) is identical to the absolute temperature that appears in the equations of state
of the ideal gas. So far we have not discriminated between these two temperature
scales, assuming tacitly that they correspond to the same physical quantity. How-
ever, to prove it, we should determine the efficiency of the Carnot engine which
uses the ideal gas as a working substance, without invoking the second law of ther-
modynamics. For this purpose, we use only the equations of state of the ideal gas
and the first law of thermodynamics.

To discriminate for the time being between the two temperatures, we use the
symbol T ′ for the absolute temperature present in the equations of state of the ideal
gas, and the symbol T for the thermodynamic temperature in formula (4.99). From
(4.96), we determine the work W ∗ in the Carnot cycle:

W ∗ = Q1 + Q2. (4.100)

Recall that the heat received by the ideal gas in a reversible isothermal process
amounts to (see (3.41))

Q = −nRT ′ ln
Vi

Vf

, (4.101)

hence for the heat Q1 and Q2, we obtain, respectively,

Q1 = −nRT ′
1 ln

V1

V2
, (4.102)

Q2 = −nRT ′
2 ln

V3

V4
. (4.103)

Using (4.102) and (4.103) in (4.100) and in definition (4.95), we get

ηe = 1 − T ′
2

T ′
1

ln(V3/V4)

ln(V2/V1)
. (4.104)

We need to show now that V3/V4 = V2/V1. The equation of the adiabat for the ideal
gas, expressed in the variables p and V (see (3.34)), leads to the following relations:

p2V
1+2/f

2 = p3V
1+2/f

3 , (4.105)

p1V
1+2/f

1 = p4V
1+2/f

4 , (4.106)

where Vi and pi , for i = 1,2,3,4, are the parameters of state of the ideal gas at the
beginning of the ith process (see Fig. 4.2b). Dividing the first relation by the second
one, we get

p2V2

p1V1

(
V2

V1

)2/f

= p3V3

p4V4

(
V3

V4

)2/f

. (4.107)
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Fig. 4.3 Operation principle of the refrigerator or heat pump. The arrows show the direction of
the energy flow in the form of heat and work, for T1 > T2. The system draws the heat Q2 due to
the work W done on it and gives off the heat Q∗

1 to the thermostat at T = T1. In the case of the
refrigerator, its interior is represented by the thermostat at T = T2. In the case of the heat pump,
the thermostat at T = T1 represents the interior of the room to be warmed due to the heat drawn
from the cooler surroundings

Since V1 and V2 correspond to the isotherm T = T1, and V3 and V4 correspond to the
isotherm T = T2, we have p1V1 = p2V2 and p3V3 = p4V4. Using these identities
in (4.107), we find that

V2

V1
= V3

V4
, (4.108)

hence (see (4.104))

ηe = 1 − T ′
2

T ′
1
. (4.109)

From the comparison of (4.109) with (4.99), we conclude that

T ′
2

T ′
1

= T2

T1
. (4.110)

We have just proved that the thermodynamic temperature, whose definition is based
on the fundamental relation between S, U , V and n (T −1 = (∂S/∂U)V,n), and the
absolute temperature used in the equations of state of the ideal gas, correspond to
the same physical quantity. The fact that only the ratios of two temperatures appear
in (4.110) should not be surprising because the choice of the temperature unit is
arbitrary. However, if we use the same units then the identity T = T ′ holds.

4.5.3 Refrigerator and the Heat Pump

What is going to happen when we reverse the run of the Carnot engine (see Fig. 4.1),
that is, if we reverse the directions of the energy flow, as shown in Fig. 4.3? Now the
system receives the heat Q2 from the thermostat at the temperature T2 and gives off
the heat Q∗

1 to the thermostat at the temperature T1 > T2, due to the work W done
on the system. This is the operation principle of the refrigerator. We can reverse
the natural direction of the heat flow from a warmer body to a cooler one, but it
requires that some work is done by an external agent. Most often it is the work of
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the electric current. How is the efficiency of the refrigerator defined? The idea is
to draw as much heat Q2 as possible for a given amount of the work W received.
In other words, we want to perform as little work on the system as possible for a
given amount of the heat drawn from the refrigerator. Therefore, the efficiency of
the refrigerator, ηr , is defined as follows:

ηr = Q2

W
. (4.111)

In order to determine the efficiency of the refrigerator that operates according to the
Carnot cycle, we use again both laws of thermodynamics. From relations (4.96) and
(4.98), we obtain

ηr = T2

T1 − T2
. (4.112)

For typical temperatures used in household refrigerators, ηr > 1. If T2 decreases at
constant T1 then in order to cool a system at the temperature T2, more and more
work is required, because ηr decreases and W = Q2/ηr . Thus, if we want to draw
a finite amount of heat from the system when T2 → 0 then ηr → 0 and W → ∞.
This means that it is impossible to reach the absolute zero by means of a device
that operates using the Carnot cycle. This statement is related to the third law of
thermodynamics, which is discussed in Sect. 4.7.

Another heat device whose operation is based on the Carnot cycle can be used for
heating of a building or a room. It operates in a similar way as the refrigerator does
but now we are interested in the heat Q∗

1 = −Q1 supplied by the working substance
(the system) to the thermostat at T = T1, due to the heat Q2 drawn from the cooler
surroundings, at T = T2, and the work W done on the system. Such a device is called
the heat pump. Everybody knows that the refrigerator heats the room it occupies. If
it was inserted into a wall, instead of a window, for instance, in such a way that
its back was facing the room and its door was open to the outside, then we would
obtain a primitive heat pump. The refrigerator would cool the surroundings (with a
miserable effect) due to the work done by the electric current, heating the room at
the same time.

What is the efficiency of the heat pump? An efficient heat pump should transfer
a large amount of heat, Q∗

1, to the room at the cost of as small amount of work, W ,
as possible. Therefore, the efficiency of the heat pump is defined as follows:

ηp = Q∗
1

W
. (4.113)

Using relations (4.96) and (4.98), we get

ηp = T1

T1 − T2
. (4.114)

Note that in contrast to the engine efficiency ηe, which is always smaller than unity,
we have ηp = 1/ηe > 1. The heat pump is a very efficient heating device, many
times more efficient than a typical electric heater, which changes the whole work of
the electric current into heat. It is easy to verify that the efficiency of the refrigerator
and the efficiency of the heat pump are related to each other by the formula ηp =
1 + ηr .
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Fig. 4.4 Principle of operation of four-stroke petrol and diesel engines. The arrows show the direc-
tion of processes. (a) Otto cycle (adiabatic–isochoric) for the petrol driven engine. Combustion of
the mixture (process 2) occurs at constant volume. (b) Diesel cycle (adiabatic–isobaric–isochoric)
for the Diesel (high-pressure) engine. Combustion of the mixture (process 2) occurs at constant
pressure

4.5.4 Other Thermodynamic Cycles

To design a heat engine, it is necessary to define the thermodynamic cycle on which
the engine operation is based. Usually the working substance filling the engine cylin-
ders is a mixture of air and fuel. In typical engines, the fuel is injected into cylinders
in the form of tiny droplets which start to evaporate. The ignition of the fuel is then
generated by a sparking-plug or high temperature obtained by very fast compression
of a gas. The heat released during the fuel combustion causes the gas in the cylinder
to expand and shift the piston. At the end of the cycle, the piston returns to its initial
position and the whole cycle repeats. Most often petrol is used as fuel. The opera-
tion of the four-stroke petrol driven engine is described roughly by the Otto cycle,
shown in Fig. 4.4a. The Otto cycle consists of the following reversible processes.

1. Adiabatic compression of a mixture of air and fuel.
2. Isochoric heating of the gas. This process corresponds to the petrol combustion,

which proceeds so fast that the system does not change practically its volume.
3. Adiabatic expansion during which the system performs work.
4. Isochoric cooling.

In the last process, the products of the fuel combustion are removed from the system
and fresh air is sucked in before the new compression starts. The replacement of the
working substance is not represented on the diagram, however. Processes 1 and 3
can be considered adiabatic because they occur so quickly that the transfer of heat
between the gas and surroundings can be neglected. The Diesel cycle describing the
operation of the Diesel (oil-burning, high-pressure) engine is slightly different. It is
shown in Fig. 4.4b on the Vp diagram. In this case, the combustion of the mixture
(process 2) occurs at constant pressure instead of constant volume, as in the case of
the Otto cycle.

The cycle which describes the operation of the steam engine is more complex.
It is shown in Fig. 4.5 on the Vp diagram. It consists of five reversible processes.
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Fig. 4.5 Cycle of the steam
engine. The arrows show the
direction of processes

In the first isochoric process, the steam pressure increases. In the second process,
steam expands at constant pressure. In the third process, the inflow of steam from the
boiler is cut off and then steam expands adiabatically. In the fourth process, steam
is let out at constant volume and the pressure decreases. Finally, the piston returns
to the original position in a isobaric process.

4.6 Changes in Entropy in Irreversible Processes

4.6.1 Irreversible Flow of Heat

We consider two identical systems: (1) and (2), whose heat capacity CV = ncv is
independent of temperature. The initial temperatures of the systems are T1 and T2,
and we assume that T1 > T2. If the systems are brought into contact through a rigid
diathermal wall and isolated from the surroundings, then heat flows from the system
(1) to the system (2) until thermodynamic equilibrium is reached at a temperature
Tf . We know from experience that such a process is irreversible but we want to
show this explicitly, calculating the change in the total entropy of the two systems.
The final temperature results from the first law of thermodynamics:

�U1 + �U2 = CV (Tf − T1) + CV (Tf − T2) = 0, (4.115)

hence

Tf = T1 + T2

2
. (4.116)

Since we can calculate changes in entropy in reversible processes, we have to con-
struct a reversible process which takes the system (1) from the initial state to the
final state, and another reversible process which does so with the system (2). We
know that when the heat capacity CV does not depend on temperature, the change
in the entropy of a system in a reversible isochoric process is given by (4.89), hence

�S1 + �S2 = CV

(
ln

Tf

T1
+ ln

Tf

T2

)
= CV ln

(T1 + T2)
2

4T1T2
. (4.117)
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Fig. 4.6 To calculate the change in the entropy of a system in an irreversible process from the
state i to the state f , we construct a reversible process from i to f . The change in the entropy
of the system, �Ssys, in the reversible process is the same as in the irreversible process, since
entropy is a state function. However, the change in the entropy of the surroundings is different
for each process, and it amounts to �S′

sur and �S′′
sur, respectively, because the final state of the

surroundings is different

Since (T1 + T2)
2 > 4T1T2, the inequality

�S1 + �S2 > 0 (4.118)

holds, in accord with the second law of thermodynamics. This means that the pro-
cess of the heat flow from a system at higher temperature to a system at lower
temperature is irreversible.

We have already mentioned that true reversible processes do not exist in nature.
For instance, to carry out the reversible process described above, we would have to
transfer the heat infinitely slowly, which would take infinite time. In reality, we can
carry out processes that are almost reversible, and it depends only on our technical
capabilities and patience how close they approach the ideal reversible processes. As
we know, entropy is a state function so its change between two given equilibrium
states does not depend on the process but only on those states. In contrast to a re-
versible process, which is represented by a curve (or path) in a low-dimensional
space of state parameters, an irreversible process does not have such a simple repre-
sentation. Nevertheless, the change in entropy, or another function of state, is well
defined if the initial state and final state are equilibrium states. Therefore, idealized
reversible processes actually enable us to calculate changes in entropy and other
state functions in the case of irreversible processes, which is illustrated schemati-
cally in Fig. 4.6.

Let us consider now a system in which an isothermal process occurs, that is,
the system is in contact with a thermostat at the temperature T . During the process
the system receives the heat Q from the thermostat. The system and thermostat
(surroundings) form together an isolated system. According to the second law of
thermodynamics, we have

�Ssys + �Ssur ≥ 0, (4.119)
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and the equality holds only in the case of a reversible process. Since the thermostat
is by definition infinitely large compared to the system with which it interacts, we
can approximate �Ssur by

�Ssur ≈ ∂Ssur

∂Usur
�Usur = �Usur

T
, (4.120)

where �Usur = −Q denotes the change in the internal energy of the thermostat due
to the transfer of the heat Q to the system. Substituting the last relation into (4.119),
we arrive at an important inequality:

�Ssys ≥ Q

T
. (4.121)

It means that a change in the entropy of the system in contact with a thermostat
is always greater or equal to the ratio of the heat received by the system and the
temperature of the thermostat. The equality holds only for reversible processes. For
Q = 0, we simply recover the inequality �Ssys ≥ 0 for adiabatic processes, i.e., the
second law of thermodynamics.

4.6.2 Free Gas Expansion

We consider an ideal gas isolated adiabatically from the surroundings. Initially the
gas occupies the volume Vi . Then it is allowed to expand freely (pext = 0) up to the
volume Vf . How does the entropy of the system change? Since the expansion is free,
the gas performs no work, hence, �U = 0 and its temperature T does not change.
However, since the process is irreversible, the entropy of the gas must increase.

To determine the change in the entropy of the gas in this process, we have to
find a reversible process which takes the system from the state of the volume Vi and
temperature T to the state of the volume Vf and the same temperature. The process
in question is an isothermal process, therefore the change in the entropy amounts to
(see (4.81))

�Srev = nR ln
Vf

Vi

, (4.122)

where the index ‘rev’ stands for reversible. The change in the entropy of the sur-
roundings in this reversible process equals −�Srev because the total entropy of the
system and surroundings does not change.

In the irreversible process of free gas expansion, no heat flows to the system
because it is isolated adiabatically from the surroundings. However, the change in
the entropy of the system must be the same as in the reversible process considered,
because the initial state and final state are the same in both cases, and entropy is a
state function, hence

�Sirr = nR ln
Vf

Vi

. (4.123)



4.7 Third Law of Thermodynamics 85

The change in the entropy of the surroundings is different, however, because the
total entropy of the system and surroundings must increase. This means that the
final state of the surroundings is different in each process considered (see Fig. 4.6).

4.6.3 Irreversible Chemical Reaction

The change in entropy in a chemical reaction depends on the pressure and tempera-
ture at which the reaction occurs. According to the second law of thermodynamics,
a given chemical reaction occurs spontaneously if the total entropy of the system and
surroundings increases during the reaction. As an example, we consider the reaction
of water formation from hydrogen and oxygen:

2H2 + O2 → 2H2O, (4.124)

which proceeds at the pressure of 1 bar and temperature of 25 °C. During this reac-
tion the entropy of the system changes by �Ssys = −327 J K−1 mol−1. The fact that
the entropy decreases should not be surprising. Since a liquid is formed in the reac-
tion of two gases, the volume of the system decreases significantly. The reaction is
strongly exothermic; the heat given off to the surroundings amounts to Q∗ = 572 kJ,
which increases the entropy of the surroundings by �Ssur = 1918 J K−1 mol−1. The
total increase in the entropy of the system and surroundings is positive and amounts
to �Ssys + �Ssur = 1591 J K−1 mol−1, which means that the reaction occurs spon-
taneously. However, the reverse reaction of water decomposition into oxygen and
hydrogen cannot occur in these conditions, because it would mean that the total en-
tropy of the system and surroundings decreases, in contradiction with the second
law of thermodynamics.

4.7 Third Law of Thermodynamics

In thermodynamic processes, we can only determine the difference between the en-
tropy of a given equilibrium state of the system and the entropy of a certain reference
state. However, close to the absolute zero temperature, changes in the entropy ex-
hibit characteristic behaviour. This observation is formulated as a separate law of
thermodynamics.

The Third Law of Thermodynamics
The difference between the entropy of two states of the same temperature T ,
which can be linked by a reversible process, tends to zero when T → 0.

The following formulation of the third law, less general then the first one, is also
in use.
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The entropy of the ideal crystal tends to zero when T → 0.

It may happen, in general, that the entropy of a system tends to a constant (dependent
on that system) when T → 0. It occurs when the system is not an ideal crystal at
the absolute zero, but a frozen disorder exists in it. Then its entropy at T = 0 differs
from zero. For instance, the entropy of nitrogen oxide tends to 4.77 J K−1 mol−1

when its temperature tends to zero. One of the consequences of the third law of
thermodynamics is that various quantities expressed in terms of the first derivatives
of entropy, such as the heat capacity CV and Cp or the thermal expansion coefficient,
tend to zero when T → 0.

4.8 Exercises

4.1 A cyclic process occurring in 1 mol of a monatomic ideal gas, consists of the
following stages: (1) the pressure increases from p1 to p2 at constant volume V =
V1, (2) the volume increases from V1 to V2 at constant pressure p = p2, (3) the
pressure decreases from p2 to p1 at V = V2 and (4) the volume decreases from V2
to V1 at p = p1. Calculate the work done in the process, the change in the internal
energy of the gas and the heat transferred to or from the system at each stage and in
the whole process.

4.2 Calculate the efficiency of the engine whose operation is based on the cycle
described in Exercise 4.1.

4.3 Try to invent your own cycle and then calculate its efficiency for the ideal gas.

4.4 Draw the Carnot cycle on the diagram: entropy versus temperature, and show
that the work done in the whole cycle is equal to the area of the rectangle that
represents the cycle.

4.5 An ideal gas, in the amount of 5 mol, expands reversibly at the temperature
of 25 °C. The pressure decreases from 2 atm to 1 atm. Calculate the change in the
entropy of the system and surroundings.

4.6 The same system as in Exercise 4.5 expands irreversibly against constant ex-
ternal pressure of 1 atm. The initial and final temperature is the same and amounts
to 25 °C. Calculate the work done by the system, change in its internal energy and
heat transferred from the surroundings to the system. How does the entropy of the
system and surroundings change?

4.7 A system with the heat capacity CV = ncv , independent of temperature, is to
be cooled down to the temperature T2 by means of the Carnot engine. The initial
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temperature of the system amounts to T1 > T2. The temperature of the radiator, T2,
is constant. Calculate the work to be done.

4.8 Two identical systems with the heat capacity CV , independent of temperature,
are initially at the temperatures T1 and T2, respectively, where T1 > T2. Find the final
temperature of the systems, assuming that heat is transferred from the first system to
the second one in a reversible way by means of the Carnot engine. What would be
the final temperature of the systems if the transfer of heat occurred in a irreversible
process through a rigid diathermal wall separating the systems? Make use of the
fact that in the first case the total entropy of the systems is constant, whereas in the
second case the total internal energy is constant.

4.9 Calculate the change in the entropy of 1 mol of a substance whose temperature
changes from Ti to Tf and its heat capacity at constant volume is given by the
formula

cv = A + BT − CT −2,

where A, B and C are some constants.

4.10 The heat capacity per unit volume, cv , of the perfect blackbody changes with
temperature as

cv = Cv

V
= 4γ T 3,

where γ is a constant. Calculate the change in the entropy of the perfect blackbody
whose temperature changes from Ti to Tf .

4.11 We want to maintain at home a temperature of 23 °C, while the outdoor tem-
perature amounts to 0 °C. How much can we reduce the electricity bill, using a heat
pump instead of an electric heater?

4.12 The temperature of water inside an artesian well in an Australian desert
amounts to 5 °C, while the temperature of air amounts to 20 °C. A heat machine
of the efficiency of the Carnot engine performs the work of 500 kJ. How much heat
does it transfer to the well?

4.13 A certain thermodynamic system is characterized by the following equation of
state:

U = B
S3

nV
,

where B is a constant. Find the dependence of the pressure and temperature of the
system on its internal energy, volume and mole number.

4.14 Using the equation of state of the photon gas: U = γV T 4, determine its en-
tropy S as a function of T and V , and also as a function of U and V . Then, determine
the pressure of the photon gas as a function of T .
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4.15 Find the entropy of a monatomic van der Waals gas, using the equations of
state:

p = RT

v − b
− a

v2
, u = 3

2
RT − a

v
,

where v = V/n and u = U/n.

4.16 The entropy of the systems A and B is given by

SA =
(

nAVAUA

D

)1/3

and SB =
(

nBVBUB

D

)1/3

,

respectively, where D is a constant. The temperatures and pressures in the systems
are the same: pA = pB and TA = TB . Show by direct calculation that the total en-
tropy of the fused system is equal to S = SA + SB . Make use of the fact that the
pressure and temperature are functions of the molar internal energy and molar vol-
ume, and that the relations n = nA + nB , U = UA + UB and V = VA + VB hold
for the total mole number n, total internal energy U , and total volume V . Find the
dependence of S on n, V and U .

4.17 A vessel divided into two equal parts by an internal wall is at rest on a flat
surface. One half of the vessel is occupied by a gas, whereas the other half is empty.
There is no friction between the vessel and the surface. What will happen to the
vessel if the internal wall is removed suddenly? Will the vessel move, and if so, in
what direction? If the vessel moves will it be able to stop later if there is no friction?
Draw a picture showing the motion of the vessel and gas. To solve this problem,
make use of the fundamental laws of mechanics and thermodynamics.



Part II
Phase Transitions



Chapter 5
Thermodynamic Potentials

5.1 Legendre Transformation of the Internal Energy and
Entropy

The first and second laws of thermodynamics, discussed in the two previous chap-
ters, show which processes are allowed by the energy conservation principle and
occur spontaneously, and which do not. A given process occurs spontaneously if the
change in the total entropy of the system and its surroundings is not negative. The
problem is that it is rather difficult, or even impossible, to watch all changes that
occur in the surroundings. On the other hand, in many physical or chemical exper-
iments, either the temperature or pressure of the surroundings is constant or both
parameters are constant. Then does it exist a simpler way to describe spontaneous
processes? Is it possible to describe such processes only in terms of state functions
of the system? We will see that state functions called thermodynamic potentials
serve exactly for this purpose.

Description of the system in terms of any thermodynamic potential is equivalent
to the fundamental relation for that system, i.e., S = S(U,V,n) or U = U(S,V,n).1

Strictly speaking, the relation between a given thermodynamic potential and a
uniquely defined set of independent state parameters, called the natural variables
of that potential, is equivalent to the fundamental relation U = U(S,V,n). We will
see that at least one natural variable is an intensive parameter. The choice of the
appropriate thermodynamic potential depends on the intensive parameters of the
system which are fixed by the interaction with the surroundings.

The thermodynamic potentials are derived from the fundamental relation by
means of a mathematical procedure called the Legendre transformation, which ap-
pears in many fields of physics. For example, description of a mechanical system
in terms of the Lagrangian is equivalent to the description of that system in terms
of the Hamiltonian. The latter is related to the former by the Legendre transforma-
tion which replaces the velocities of the bodies as independent variables with their
momenta.

1For simplicity, we consider here only one-component systems.
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Fig. 5.1 Idea of the Legendre
transformation. (a) The curve
y = Y (x) is represented as a
set of the points (x,Y (x)).
(b) The same curve is
represented as a set of the
tangents to the curve

5.1.1 Definition of the Legendre Transformation

Functions of One Variable The idea of the Legendre transformation for a func-
tion of one variable is presented in Fig. 5.1. If Y(x) is a convex or concave function,
i.e., its derivative dY/dx is a monotonic function of x, then the curve y = Y(x) can
be represented either as a set of the points (x,Y (x)) in the xy plane, or as a set of
the tangents to this curve. The tangent to the curve at the given point x is defined by
the slope, z = dY/dx, and by the point of intersection of the tangent with the y axis,
Ψ (z). It follows from Fig. 5.1a that the slope satisfies the relation: z = (Y − Ψ )/x,
hence

Ψ (z) = Y(x) − zx. (5.1)

Ψ is a function of z because the relation z = dY/dx can be inverted, to give x =
x(z). The transformation defined by (5.1) together with the relation

z = dY

dx
(5.2)

is called the Legendre transformation of the function Y(x), and Ψ (z) is the Legendre
transform of that function. The relation ψ = Ψ (z) defines a curve in the zψ plane,
i.e., a set of the points (z,Ψ (z)), in the same way as the relation y = Y(x) defines
a curve in the xy plane. Both relations can be treated as equivalent representations
of the same curve. Transition from one representation to the other is defined by
formulae (5.1) and (5.2). Differentiating (5.1) with respect to z and using (5.2), we
get

dΨ

dz
= −x. (5.3)

We can also derive this result, taking the differential of Ψ . Since dY = zdx, we have

dΨ = dY − zdx − xdz = −xdz. (5.4)

We can see now that the change of a given function into its Legendre transform
replaces the independent variable with the dependent variable and vice versa. We
can recover the function Y(x) from Ψ (z), using the formula

Y = Ψ + xz (5.5)
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together with relation (5.3). Note that the inverse transformation, defined by (5.3)
and (5.5), has the same form as the original Legendre transformation, defined by
(5.1) and (5.2), except the sign.

Functions of Several Variables For simplicity, we consider a function of two
variables: Y(x1, x2). Now there are two partial derivatives: z1 = (∂Y/∂x1)x2 and
z2 = (∂Y/∂x2)x1 , hence

dY = z1dx1 + z2dx2. (5.6)

We can perform a partial Legendre transformation, i.e., with respect to one variable
at a constant value of the second variable, for instance, with respect to x1 at constant
x2:

Ψ (z1, x2) = Y(x1, x2) − z1x1. (5.7)

Then

dΨ = −x1dz1 + z2dx2, (5.8)

where x1 = −(∂Ψ/∂z1)x2 , z2 = (∂Ψ/∂x2)z1 . We have simply interchanged the roles
of x1 and z1, whereas x2 remains an independent variable. Note also that z2 is a
function of x1 and x2 in (5.6), whereas in (5.8), it is as a function of z1 and x2. In
thermodynamics, we often deal with such a situation.

The second possibility is the full Legendre transformation of the function Y with
respect to both variables. It is defined in an analogous way as in the case of one
variable, i.e.,

Ψ (z1, z2) = Y(x1, x2) − z1x1 − z2x2. (5.9)

We should remember about the condition that the transformation of (x1, x2) into
(z1, z2) can be inverted. It follows from (5.6) and from definition (5.9) that

dΨ = −x1dz1 − x2dz2, (5.10)

where x1 = −(∂Ψ/∂z1)z2 , x2 = −(∂Ψ/∂z2)z1 . In this case, we have interchanged
simultaneously the roles of x1, x2 and z1, z2 as independent and dependent variables.

Generalization to functions of more variables is straightforward. For instance, in
the case of three variables, we can perform partial Legendre transformations with
respect to one or two variables, or the full Legendre transformation with respect to
three variables. It is easy to calculate that there are seven possibilities altogether.

Legendre Transformation of the Internal Energy All thermodynamic poten-
tials result from partial Legendre transformations of the internal energy

U = U(S,V,n), (5.11)

whose differential is given by

dU = T dS − pdV + μdn. (5.12)

Thus, the natural variables of the internal energy are three extensive parameters: the
entropy S, volume V and mole number n. The intensive parameters related to them
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are: the temperature T , pressure p (or rather −p) and chemical potential μ. They
are equal to the respective partial derivatives of U (see (4.49)–(4.51)). Fundamental
relation (5.11) contains complete information about the system in thermodynamic
equilibrium. When we change from the internal energy to one of the thermodynamic
potentials we do not lose any information about the system, however, the state pa-
rameters used as independent variables change. Not all thermodynamic potentials
have practical meaning. We will also see that the full Legendre transformation with
respect to all three variables leads to a function identical to zero, which follows from
the fact that U , S, V and n are extensive parameters. Below we discuss the most im-
portant thermodynamic potentials: the Helmholtz free energy, enthalpy, Gibbs free
energy and the grand thermodynamic potential.

5.1.2 Helmholtz Free Energy

When the system is in thermal contact with a heat reservoir its temperature is equal
to the temperature of the reservoir. Therefore, it is convenient to have T , V and n

as independent variables, which means that we have to interchange the entropy and
temperature as the independent and dependent variable. We know from (5.12) that

T =
(

∂U

∂S

)
V,n

, (5.13)

hence, the thermodynamic potential which results from the partial Legendre trans-
formation of the internal energy with respect to the entropy, called the Helmholtz
free energy, is defined as follows:

F = U − T S. (5.14)

Taking the differential of both sides of (5.14) and using (5.12), we get

dF = −SdT − pdV + μdn. (5.15)

From (5.15) we conclude that T , V and n are the independent variables, i.e., F =
F(T ,V,n), whereas S, p and μ are functions of these variables, defined by the
relations: (

∂F

∂T

)
V,n

= −S,

(
∂F

∂V

)
T ,n

= −p,

(
∂F

∂n

)
T ,V

= μ. (5.16)

Comparing the relations:(
∂U

∂S

)
V,n

= T and

(
∂F

∂T

)
V,n

= −S, (5.17)

we notice that the entropy and temperature have been interchanged as the inde-
pendent and dependent variable. Both U = U(S,V,n) and F = F(T ,V,n) contain
complete information about the system in thermodynamic equilibrium. In this sense,
they are equivalent to each other. Nevertheless, the choice of one or the other de-
pends on the actual physical situation.
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A relation exists between the work W done on a closed system (n = const) and
the change in the Helmholtz free energy in a reversible isothermal process. From the
definition of F and the first law of thermodynamics, it follows that in such a process

�F = �U − T �S = �U − Q = W, (5.18)

where Q = T �S is the heat received by the system. For that reason F is called the
free energy. It is the part of the internal energy that can be entirely used up by a
system at constant temperature to perform work.

5.1.3 Enthalpy

The next thermodynamic potential results from the partial Legendre transformation
of the internal energy with respect to volume. It is called the enthalpy, H :

H = U + pV. (5.19)

It was already introduced in Sect. 3.3. Note that the plus sign in front of pV results
from the minus sign in the relation(

∂U

∂V

)
S,n

= −p. (5.20)

Using (5.12), it is easy to show that

dH = T dS + V dp + μdn. (5.21)

We infer from the form of dH that S, p and n are the independent variables, i.e.,
H = H(S,p,n), whereas T , V and μ are given by the relations:(

∂H

∂S

)
p,n

= T ,

(
∂H

∂p

)
S,n

= V,

(
∂H

∂n

)
S,p

= μ. (5.22)

Transforming the internal energy into enthalpy, we interchange V and p as the inde-
pendent and dependent variable. In a closed system at constant pressure, the change
in the enthalpy is equal to the heat received by the system, because

�H = �U + p�V = �U − W = Q, (5.23)

where we have used definition (5.19) and the first law of thermodynamics.

5.1.4 Gibbs Free Energy

The thermodynamic potential obtained from the partial Legendre transformation of
the internal energy with respect to the entropy S and volume V is called the Gibbs
free energy, G, or simply the Gibbs function. It is defined by the formula

G = U − T S + pV. (5.24)
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The Gibbs free energy can also be expressed as G = F + pV or G = H − T S,
therefore, sometimes it is referred to as the free enthalpy. Taking the differential of
both sides of (5.24) and using (5.12), we get

dG = −SdT + V dp + μdn. (5.25)

From (5.25), we infer that T , p and n are the independent parameters, i.e., G =
G(T ,p,n), whereas S, V and μ are given by the relations:(

∂G

∂T

)
p,n

= −S,

(
∂G

∂p

)
T ,n

= V,

(
∂G

∂n

)
T ,p

= μ. (5.26)

Unlike the Helmholtz free energy and enthalpy, which are functions of one intensive
and two extensive parameters, G depends on two intensive parameters: T and p, and
on the extensive parameter n. Now the chemical potential has a simple interpreta-
tion in terms of G. It is related to the change in the Gibbs free energy caused by
addition of an infinitesimal amount of matter to the system at constant temperature
and pressure.

To derive the relation between the chemical potential, temperature and pressure,
we use the Euler relation (see (4.60))

U = T S − pV + μn. (5.27)

From the Euler relation, which simply reflects the fact that U , S, V and n are exten-
sive parameters, another form of the Gibbs free energy follows, i.e.,

G = μn. (5.28)

Thus, in the case of one-component systems, the chemical potential is identical with
the molar Gibbs free energy g = G/n. Taking the differential of the two sides of
(5.28), we get dG = μdn + ndμ, which must agree with (5.25), hence

ndμ = −SdT + V dp. (5.29)

Dividing both sides by n, we obtain an important relation called the Gibbs–Duhem
equation:

dμ = −sdT + vdp, (5.30)

where s = S/n and v = V/n denote the molar entropy and molar volume, respec-
tively. The Gibbs–Duhem equation can also be obtained from (5.25) when n = 1 is
substituted. We conclude from (5.30) that in one-component systems the chemical
potential is a function of temperature and pressure, and(

∂μ

∂T

)
p

= −s,

(
∂μ

∂p

)
T

= v. (5.31)

In Sect. 4.3.3, we derived relations (5.31) for the ideal gas, and here we have shown
that they hold in general.

Then we calculate the change in the Gibbs free energy in a reversible process
at constant temperature and pressure. From the definition of G (see (5.24)) and the
first law of thermodynamics, we get

�G = �U − T �S + p�V = �U − Q + p�V = W + p�V, (5.32)
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where Q = T �S, and W denote the total work performed on the system. Until now
we have considered only mechanical work of the form −p�V . However, also other
kinds of work can be performed on the system, for instance, the work of the electric
current. Denoting by W ′ = W + p�V all kinds of work different from −p�V , we
can express (5.32) as follows:

�G = W ′. (5.33)

Formula (5.33) is very useful in electrochemistry because measuring the voltage of
an electrochemical cell, we can determine the change in the Gibbs free energy in a
chemical reaction (see Chap. 11).

5.1.5 Grand Thermodynamic Potential

The last thermodynamic potential to be discussed here results from the partial Leg-
endre transformation of the internal energy with respect to the entropy and mole
number:

Ω = U − T S − μn. (5.34)

Ω is called the grand thermodynamic potential. It follows from its definition that
dΩ = dU − d(T S) − d(μn), hence

dΩ = −SdT − pdV − ndμ, (5.35)

where we have used (5.12). The state parameters T , V and μ are the independent
variables, i.e., Ω = Ω(T ,V,μ), whereas S, p and n are given by the relations:(

∂Ω

∂T

)
V,μ

= −S,

(
∂Ω

∂V

)
T ,μ

= −p,

(
∂Ω

∂μ

)
T ,V

= −n. (5.36)

Using the Euler relation, we can also express Ω as follows:

Ω = −pV, (5.37)

hence, Ω/V = −p. The potential Ω is rarely used in phenomenological thermo-
dynamics. However, it is very useful in statistical thermodynamics if we consider a
system at constant temperature and volume, which in addition can exchange matter
with the surroundings. Then we say that the system is contact with a heat and mat-
ter reservoir, which fixes the value of the temperature and chemical potential of the
system.

Both the Gibbs free energy and the grand thermodynamic potential depend on
two intensive parameters and one extensive parameter. Then is it possible to define
a thermodynamic potential which depends only on intensive parameters? Such a
potential must be a function of T , p and μ because it is given by the full Legendre
transformation of the internal energy with respect to the three extensive parameters:
S, V and n, which is U − T S + pV − μn. Note, however, that because of the Euler
relation, it is identical to zero, which simply reflects the fact that T , p and μ are not
independent of one another in one-component systems.
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5.1.6 Massieu Functions

We can also consider the Legendre transformation of entropy. It is defined in a sim-
ilar way as in the case of the internal energy. The state functions formed in this way
are called the Massieu functions. The Massieu functions, as the thermodynamic po-
tentials, also provide full information about a system in thermodynamic equilibrium.
Here we give one example of a Massieu function, which will be used in Sect. 5.2.2,
but then we will not use them any more. However, we recommend the reader to
derive the remaining five Massieu functions for a one-component system.

To obtain the Massieu functions, we start from the fundamental relation S =
S(U,V,n) and use the expression for the entropy differential (cf. (5.12))

dS = 1

T
dU + p

T
dV − μ

T
dn. (5.38)

The intensive parameter coupled with the internal energy is 1/T , hence, the Leg-
endre transformation of the entropy with respect to the internal energy leads to the
function

Σ = S − 1

T
U. (5.39)

It is easy to see that Σ = −F/T . From relations (5.38) and (5.39), we get

dΣ = −Ud

(
1

T

)
+ p

T
dV − μ

T
dn = U

T 2
dT + p

T
dV − μ

T
dn. (5.40)

Substituting n = 1, we obtain the following relation:

dσ = u

T 2
dT + p

T
dv, (5.41)

where σ = Σ/n, u = U/n and v = V/n, from which we infer that σ is a function
of T and v. If we know u and p as functions of T and v, then we can determine the
function σ(T ,p). We use relation (5.41) in Sect. 5.2.2, to determine the thermody-
namic potentials for the ideal gas.

5.2 Natural Variables

It often happens in thermodynamics that the same physical quantity is considered as
a function of different variables. It is one of the reasons that the formalism used in
thermodynamics may be considered difficult. In this section, we give more attention
to this problem.

For instance, the dependence of entropy on U , V and n contains complete in-
formation about a given system in thermodynamic equilibrium, and the relation
S = S(U,V,n) is called the fundamental relation. Let us assume now that we have
managed to determine the molar entropy of the system as a function of tempera-
ture and pressure: s = s(T ,p). Since entropy is an extensive parameter, we have
S(T ,p,n) = ns(T ,p). Is this information about the system sufficient to recover the
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fundamental relation? The answer is negative. To find out why, we first look for
the thermodynamic potential which depends on T , p and n. We know that it is the
Gibbs free energy G. As we also know, the relation G = G(T ,p,n) is equivalent to
the fundamental relation, i.e., it also contains complete information about the sys-
tem. If we knew the chemical potential as a function of T and p we would also know
G(T ,p,n), since G = nμ(T ,p) (see (5.28)), and we could recover the fundamental
relation S = S(U,V,n) by means of the inverse Legendre transformation. However,
it follows from the Gibbs–Duhem equation:

dμ = −s(T ,p)dT + v(T ,p)dp, (5.42)

that to determine μ(T ,p), both the molar entropy and molar volume as functions of
T and p are needed. Therefore, the relation s = s(T ,p) or S = S(T ,p,n) contains
only partial information about the system.

By natural variables we understand the parameters of state whose relation with
one of the state functions: the entropy, the internal energy, a thermodynamic po-
tential or a Massieu function, contains complete information about the system in
thermodynamic equilibrium.

5.2.1 Equivalent Representations of the Fundamental Relation

The fundamental relation U = U(S,V,n) and the relations between thermody-
namic potentials and their natural variables represent equivalent forms of descrip-
tion of a system in thermodynamic equilibrium, i.e., the relations: F = F(T ,V,n),
H = H(S,p,n), G = G(T ,p,n) and Ω = Ω(T ,V,μ) are equivalent to the fun-
damental relation. In other words, they are equivalent representations of the fun-
damental relation. As we have already mentioned, in the case of one-component
systems, there exist six thermodynamic potentials. For the remaining two poten-
tials, which are included only for completeness, there are no commonly accepted
names, therefore, we assume the symbols Ψ = Ψ (S,V,μ) and Θ = Θ(S,p,μ).
Below we present a short summary of all equivalent representations of the funda-
mental relation. The potentials F , H and Ψ are partial Legendre transforms of the
function U(S,V,n) with respect to one extensive parameter, and the potentials G,
Ω and Θ , with respect to two extensive parameters.

Fundamental relation: U = U(S,V,n)

dU = T dS − pdV + μdn,(
∂U

∂S

)
V,n

= T ,

(
∂U

∂V

)
S,n

= −p,

(
∂U

∂n

)
S,V

= μ.

Helmholtz free energy: F = F(T ,V,n)

Legendre transform of U(S,V,n) with respect to S;

F = U − T S, dF = −SdT − pdV + μdn,(
∂F

∂T

)
V,n

= −S,

(
∂F

∂V

)
T ,n

= −p,

(
∂F

∂n

)
T ,V

= μ.
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Enthalpy: H = H(S,p,n)

Legendre transform of U(S,V,n) with respect to V ;

H = U + pV, dH = T dS + V dp + μdn,(
∂H

∂S

)
p,n

= T ,

(
∂H

∂p

)
S,n

= V,

(
∂H

∂n

)
S,p

= μ.

Potential Ψ : Ψ = Ψ (S,V,μ)

Legendre transform of U(S,V,n) with respect to n;

Ψ = U − μn, dΨ = T dS − pdV − ndμ,(
∂Ψ

∂S

)
V,μ

= T ,

(
∂Ψ

∂V

)
S,μ

= −p,

(
∂Ψ

∂μ

)
S,V

= −n.

Gibbs free energy: G = G(T ,p,n)

Legendre transform of U(S,V,n) with respect to S and V ;

G = U − T S + pV, dG = −SdT + V dp + μdn,(
∂G

∂T

)
p,n

= −S,

(
∂G

∂p

)
T ,n

= V,

(
∂G

∂n

)
T ,p

= μ.

Grand thermodynamic potential: Ω = Ω(T ,V,μ)

Legendre transform of U(S,V,n) with respect to S and n;

Ω = U − T S − μn, dΩ = −SdT − pdV − ndμ,(
∂Ω

∂T

)
V,μ

= −S,

(
∂Ω

∂V

)
T ,μ

= −p,

(
∂Ω

∂μ

)
T ,V

= −n.

Potential Θ: Θ = Θ(S,p,μ)

Legendre transform of U(S,V,n) with respect to V and n;

Θ = U + pV − μn, dΘ = T dS + V dp − ndμ,(
∂Θ

∂S

)
p,μ

= T ,

(
∂Θ

∂p

)
S,μ

= V,

(
∂Θ

∂μ

)
S,p

= −n.

5.2.2 Thermodynamic Potentials for the Ideal Gas

The molar entropy of the ideal gas, s(u, v), was already calculated in Sect. 4.3.3.
Now we want to determine the thermodynamic potentials. To do it, it is convenient
to use relation (5.41). Substituting the equations of state: u = f RT/2 and pv = RT ,
where f denotes the number of degrees of freedom of one molecule, we get

dσ = f R

2T
dT + R

v
dv. (5.43)
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It is easy to verify that relation (5.43) is satisfied by the function:

σ(T , v) = σ0 + 1

2
f R ln

T

T0
+ R ln

v

v0
, (5.44)

where the constants σ0, T0 and v0 define the reference state. From relation (5.39), we
determine the molar entropy: s = σ + u/T . Expressing T by u, we recover (4.68):

s(u, v) = s0 + 1

2
f R ln

u

u0
+ R ln

v

v0
, (5.45)

where s0 = σ0 + f R/2. Then, by inverting the relation s = s(u, v), we obtain:

u(s, v) = u0

(
v0

v

)2/f

exp

[
2(s − s0)

f R

]
. (5.46)

Helmholtz Free Energy The molar Helmholtz free energy, φ = F/n, follows
from the relation φ/T = −σ :

φ(T , v)

T
= φ0

T0
− 1

2
f R ln

T

T0
− R ln

v

v0
, (5.47)

where φ0 = φ(T0, v0) = −σ0T0. Since F is an extensive quantity, we have

F(T ,V,n) = nF(T ,V/n,1) = nφ(T ,V/n). (5.48)

Enthalpy The molar enthalpy is equal to h = H/n = u + pv = (1 + 2/f )u. The
natural variables for h are the molar entropy and pressure, therefore, we have to
express u as a function of s and p. The substitution of v/v0 = (u/u0)(p0/p) into
(5.45) gives

s(u,p) = s0 + 1

2
(f + 2)R ln

u

u0
− R ln

p

p0
, (5.49)

where u0 = f RT0/2, p0 = RT0/v0, hence,

h(s,p) = h0

(
p

p0

)2/(f +2)

exp

[
2(s − s0)

(f + 2)R

]
, (5.50)

where h0 = (1 + 2/f )u0. Since H(S,p,n) is an extensive quantity, we have

H(S,p,n) = nH(S/n,p,1) = nh(S/n,p). (5.51)

Gibbs Free Energy For one-component systems, the molar Gibbs free energy is
equal to the chemical potential, and since G = F +pV , we have μ = φ +pv. Using
(5.47) and the equation of state: pv = RT , we obtain (cf. (4.70)):

μ(T ,p)

T
= μ0

T0
− 1

2
(f + 2)R ln

T

T0
+ R ln

p

p0
, (5.52)

where μ0 = φ0 + RT0, and

G(T ,p,n) = nG(T ,p,1) = nμ(T ,p). (5.53)
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Grand Thermodynamic Potential The natural variables for Ω are T , V and μ.
Since Ω/V = −p we have

Ω(T ,V,μ) = −Vp(T ,μ). (5.54)

To obtain the pressure as a function of T and μ, we invert relation (5.52) at constant
temperature, hence

p(T ,μ) = p0

(
T

T0

)(f +2)/2

exp

(
μ

RT
− μ0

RT0

)
. (5.55)

Finally, we notice that all constants that appear in Eqs. (5.45)–(5.55) can be ex-
pressed by three independent constants, which we have chosen to be σ0, T0 and v0.
We recommend the reader to verify that using an arbitrary thermodynamic potential,
one can derive the equations of state of the ideal gas.

5.3 Free-Energy Minimum Principle

Using the second law of thermodynamics, we derived in Sect. 4.1.1 the entropy max-
imum principle for an isolated system composed of a certain number of subsystems.
When the internal constraints imposed initially on the subsystems are removed, the
system tends to a new equilibrium state. In other words, a spontaneous process oc-
curs in the system. The entropy maximum principle enables us to determine the state
parameters of the subsystems that correspond to the equilibrium state of the system
without internal constraints. The following question can be raised. Since the relation
between any thermodynamic potential and its natural variables is equivalent to the
fundamental relation U = U(S,V,n) or S = S(U,V,n), is it possible to formulate,
for a given potential, a principle analogous to the entropy maximum principle for
isolated systems? We will show that in the case of the Helmholtz and Gibbs free
energy.

5.3.1 Systems at Constant Temperature

We want to find the condition which any spontaneous process occurring at constant
temperature must satisfy. To do this, we consider a closed system at constant volume
and in thermal contact with a heat reservoir whose temperature is denoted by T r .
The system considered and the reservoir form together an isolated system, which
means that the condition

�
(
U + Ur

) = 0, (5.56)

holds, where U and Ur denote the internal energy of the system and reservoir, re-
spectively. According to the second law of thermodynamics, the change in the total
entropy of the system and reservoir in any process satisfies the inequality

�S + �Sr ≥ 0. (5.57)
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We treat the size of the reservoir as infinite compared to the size of the system.
Therefore, the transfer of the energy �Ur = −�U between the system and reservoir
does not change the temperature of the latter. From the point of view of the reservoir,
�Ur can be treated as an infinitesimal amount of energy, hence

�Sr = �Ur

T r
. (5.58)

Substituting (5.58) into (5.57) and replacing �Ur with −�U , we get the following
inequality:

�
(
U − T rS

) ≤ 0. (5.59)

Since U − T rS is equal to the Helmholtz free energy of the system considered
(F = U − T S) provided that T = T r , we can formulate the following conclusion,
which is a consequence of the second law of thermodynamics.

Corollary 5.1 When a spontaneous process occurs in a closed system at constant
volume and in contact with a heat reservoir, the change in the Helmholtz free energy
of the system satisfies the inequality

�F ≤ 0,

where �F = 0 only in the case of a reversible process.

A given process can occur spontaneously in a closed system at constant volume
and at constant temperature if the initial state of the system is an equilibrium state
in the presence of some internal constraints. Therefore, we consider a system com-
posed of m subsystems which are initially separated from one another with rigid
diathermal walls, and the whole system is in thermal contact with a heat reservoir at
the temperature T r . The temperature of each subsystem is equal to the temperature
of the reservoir, i.e., T (i) = T r , for i = 1, . . . ,m. The total volume of the system,
V , and the total mole number, n, are constant:

m∑
i=1

V (i) = V,

m∑
i=1

n(i) = n. (5.60)

The Helmholtz free energy is an extensive quantity, hence

F
(
T r,V (1), n(1), . . . , V (m), n(m)

) =
m∑

i=1

F (i)
(
T r,V (i), n(i)

)
, (5.61)

where F (i) and F correspond to the ith subsystem and the whole system, respec-
tively. After the internal constraints are removed the system tends to a new equilib-
rium state with a lower value of F . The Helmholtz free-energy minimum principle
follows from Corollary 5.1.

Corollary 5.2 A closed system at constant volume and in thermal contact with a
heat reservoir, after the removal of internal constraints, reaches a new equilibrium
state that corresponds to the minimum of the Helmholtz free energy on the set of all
equilibrium states of the system in the presence of the constraints.
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By a system with constraints we understand a system composed of subsystems
separated by internal walls. Equilibrium states of such a system are defined by the
parameters V (i) and n(i), i = 1, . . . ,m, which satisfy conditions (5.60), and by the
condition of thermal equilibrium between the subsystems and the heat reservoir, i.e.,
T (i) = T r . To prove statement 5.2, we take the state parameters that minimize F .
If they did not correspond to the equilibrium state of the system without constraints
then, after the removal of the constraints, the system would have to tend sponta-
neously to a certain equilibrium state of a higher value of F , which would contradict
the condition �F ≤ 0. The Helmholtz free-energy minimum principle is merely a
conclusion from the second law of thermodynamics. However, it is closer to the ac-
tual experimental situation and easier to apply than the entropy maximum principle.

Using the necessary condition for a minimum of F (dF = 0) at constant temper-
ature, we get

dF =
m∑

i=2

[−(
p(i) − p(1)

)
dV (i) + (

μ(i) − μ(1)
)
dn(i)

] = 0, (5.62)

where we have used (5.15) and (5.60). From condition (5.62), it follows that pres-
sures and chemical potentials are the same in all subsystems. In this way, we have
recovered the conditions of mechanical equilibrium and equilibrium with respect to
the flow of matter, derived in Sect. 4.2 from the entropy maximum principle. The
equality of temperatures is ensured by thermal contact of the system with the heat
reservoir.

Work in the Isothermal Process Now we consider a system in thermal contact
with a heat reservoir. The system performs work W ∗ on the surroundings, from
which it is thermally insulated. The system and reservoir form together an adia-
batically isolated system, hence, the inequality (5.57) must be satisfied. The work
performed by the system amounts to

W ∗ = −�
(
U + Ur

) = −�U − T r�Sr, (5.63)

where we have used (5.58). Using (5.63) and (5.57), we get

W ∗ ≤ −�F, (5.64)

where F is the Helmholtz free energy of the system at the temperature T = T r . In
the case of a reversible process, W ∗ = −�F (cf. (5.18)), hence

W ∗
irr < W ∗

rev = −�F, (5.65)

where W ∗
rev and W ∗

irr denote, respectively, the work in a reversible and irreversible
process between the same two states.

5.3.2 Systems at Constant Temperature and Pressure

In practice, we often deal with processes occurring both at constant temperature and
pressure. We can imagine a system in thermal contact with the surroundings and
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closed with a movable piston, to ensure the equality of temperatures and pressures
in the system and surroundings. Such a system is said to be in contact with a heat
and volume reservoir. Since the size of the reservoir is treated as infinite compared
to the size of the system, a transfer of heat or a change in the volume of the system
does not influence the temperature and pressure of the reservoir.

We assume that the system in thermal and mechanical contact with the heat and
volume reservoir, at the temperature T r and pressure pr , is closed. The system and
reservoir form together an isolated system, hence

�
(
U + Ur

) = 0 and �
(
V + V r

) = 0, (5.66)

where U and V correspond to the system, and Ur and V r correspond to the reser-
voir. From the second law of thermodynamics, it follows that

�S + �Sr ≥ 0. (5.67)

Because of infinite size of the reservoir, changes in its internal energy, �Ur =
−�U , or volume, �V r = −�V , can be treated as infinitesimal quantities, hence

�Sr = �Ur

T r
+ pr�V r

T r
= −�U

T r
− pr�V

T r
. (5.68)

Substituting (5.68) into inequality (5.67), we get

�
(
U − T rS + prV

) ≤ 0. (5.69)

The function U − T rS + prV is equal to the Gibbs free energy of the system
(G = U − T S + pV ) provided that T = T r and p = pr . Therefore, the following
conclusion can be formulated.

Corollary 5.3 When a spontaneous process occurs in a closed system in contact
with a heat and volume reservoir, the change in the Gibbs free energy of the system
satisfies the inequality

�G ≤ 0,

where �G = 0 only in the case of a reversible process.

The minimum principle for the potential G is obtained in an analogous way as
in the case of F . We consider a closed system composed of subsystems, separated
from one another with internal walls which allow a flow of heat and changes in the
volume of the subsystems. The whole system is in contact with the heat and volume
reservoir, i.e., T (i) = T r and p(i) = pr for all subsystems. The condition

m∑
i=1

n
(i)
k = nk, (5.70)

must be satisfied for each component, where the total mole numbers, nk , are con-
stant. Here we consider the general case of a multi-component system. Recall that
the chemical potential of a one-component system is a function of temperature and
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pressure. The total Gibbs free energy, which is an extensive quantity, is given by the
following expression:

G
(
T r,pr ,

{
n

(1)
k

}
, . . . ,

{
n

(m)
k

}) =
m∑

i=1

G(i)
(
T r,pr ,

{
n

(i)
k

})
, (5.71)

where {n(i)
k } denotes the set of mole numbers of all components in the ith subsystem.

From Corollary 5.3, the Gibbs free-energy minimum principle follows.

Corollary 5.4 A closed system in thermal contact with a heat and volume reservoir,
after the removal of internal constraints, reaches a new equilibrium state that cor-
responds to the minimum of the Gibbs free energy on the set of all equilibrium states
of the system in the presence of the constraints.

An equilibrium state of the system with the constraints is defined by the mole
numbers {n(i)

k }, which satisfy conditions (5.70), and by the conditions of thermal
and mechanical equilibrium: T (i) = T r and p(i) = pr , for i = 1, . . . ,m. After the
removal of the constraints, a flow of matter between the subsystems usually occurs.

Using the necessary condition for a minimum of G (dG = 0) at constant temper-
ature and pressure, we get

dG =
m∑

i=1

dG(i) = 0, (5.72)

where

dG(i) =
∑

k

μ
(i)
k dn

(i)
k , (5.73)

and we have generalized expression (5.25) to an arbitrary number of components;
μ

(i)
k denotes the chemical potential of the kth component in the ith subsystem. Be-

cause of condition (5.70), for each component k, we have
m∑

i=1

dn
(i)
k = 0. (5.74)

Finally, we transform condition (5.72) into the following form:

dG =
∑

k

m∑
i=2

(
μ

(i)
k − μ

(1)
k

)
dn

(i)
k = 0. (5.75)

From (5.75), we conclude that in thermodynamic equilibrium, the chemical poten-
tial of each component must have the same value in all subsystems, i.e., μ

(i)
k = μ

(1)
k

for all indices i and k. In this way, using the Gibbs free-energy minimum principle,
we have recovered the condition of equilibrium with respect to the flow of matter,
derived earlier form the entropy maximum principle (see Sect. 4.2). The equality of
temperatures and pressures in the subsystems is ensured by the contact with the heat
and volume reservoir.
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Work in the Isothermal–Isobaric Process We consider a system in thermal and
mechanical contact with the heat and volume reservoir at the temperature T r and
pressure pr . The system performs the work W ∗ on the surroundings but no heat is
transferred between them. The system and reservoir form together an adiabatically
isolated system, hence, inequality (5.67) must be satisfied for any spontaneous pro-
cess. Moreover, we assume that the total volume of the system and reservoir does
not change. This means that the work performed by the system on the surroundings
is not the work due to the change of its volume. We have

W ∗ = −�
(
U + Ur

) = −�U − T r�Sr + pr�V r = −�U − T r�Sr − pr�V,

(5.76)

where we have used (5.68) and the condition �(V + V r) = 0. From (5.76) and
inequality (5.67), it follows that

W ∗ ≤ −�G, (5.77)

where G is the Gibbs free energy of the system at the temperature T r and pressure
pr . If the process is reversible then W ∗ = −�G (cf. (5.33)), hence

W ∗
irr < W ∗

rev = −�G, (5.78)

where W ∗
rev and W ∗

irr denote, respectively, the non-volume work in a reversible and
irreversible process between the same two states.

5.4 Examples of Application of Thermodynamic Potentials

The problems we have discussed so far show that to describe a one-component uni-
form system in thermodynamic equilibrium, we need six state parameters, i.e., three
extensive parameters: S, V and n, and three coupled to them intensive parameters:
T , p and μ. In each couple of the parameters: (S,T ), (V ,p) and (n,μ), we can
interchange the independent and dependent variable, using an appropriate thermo-
dynamic potential. If we assume that the mole number is constant we are left with
two couples of the state parameters: (S,T ) and (V ,p). Therefore, we have four
possible sets of independent variables: S and V , T and V , S and p, T and p, which
correspond to U , F , H and G, respectively. Derivation of various thermodynamic
relations often consists in differentiation of one parameter with respect to another
parameter at a constant value of a third parameter. To do this, a few simple rules are
used, which are presented and derived below.

5.4.1 Rules of Calculation of Some Partial Derivatives

We assume that there are four state parameters: X, Y , Z and W , and only two of
them are independent parameters. Then it can be shown that the following relations
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between the partial derivatives hold:

(
∂X

∂Y

)
Z

=
(

∂Y

∂X

)−1

Z

, (5.79)

(
∂X

∂Y

)
Z

=
(

∂X

∂W

)
Z

(
∂W

∂Y

)
Z

, (5.80)

(
∂X

∂Y

)
Z

= −
(

∂Z

∂Y

)
X

(
∂Z

∂X

)−1

Y

, (5.81)

(
∂Z

∂Y

)
W

=
(

∂Z

∂Y

)
X

+
(

∂Z

∂X

)
Y

(
∂X

∂Y

)
W

. (5.82)

Derivation Relation (5.79) is simply the derivative of an inverse function. Inver-
sion of the relation Y = Y(X,Z) at constant Z gives X = X(Y,Z). Then, differen-
tiating both sides of the relation Y = Y(X(Y,Z),Z) with respect to Y , we get

1 =
(

∂Y

∂X

)
Z

(
∂X

∂Y

)
Z

, (5.83)

from which (5.79) follows.
Relation (5.80) is also a known rule of differentiation of a composed function.

If the variable W in the function X(W,Z) is itself a function of Y and Z then
differentiating the function X(W(Y,Z),Z) with respect to Y at constant Z, we get
(5.80).

It is easy to verify that relation (5.81) follows from (5.82) when W = Z is sub-
stituted, so it remains to prove relation (5.82). Note that if in the function Z(X,Y )

the variable X is a function of Y and W then differentiating the composed function
Z(X(Y,W),Y ) with respect to Y at constant W , we recover (5.82).

5.4.2 Maxwell Relations

The internal energy, U(S,V,n), and three thermodynamic potentials: the Helmholtz
free energy, F(T ,V,n), the enthalpy, H(S,p,n), and the Gibbs free energy,
G(T ,p,n), are the most often used functions of state. As we know, their first par-
tial derivatives express relations between independent and dependent parameters
of state, which follows from the form of the differentials of these functions (see
Sect. 5.2.1):

dU = T dS − pdV + μdn,

dF = −SdT − pdV + μdn,

dH = T dS + V dp + μdn,

dG = −SdT + V dp + μdn,
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where we have assumed a one-component system. Since the mixed second order
partial derivatives of a function do not depend on the order of differentiation, there
must exist some relations between the first derivatives of the state parameters cor-
responding to these mixed derivatives. They are called the Maxwell relations. For
a function of three variables, there are three equalities of mixed derivatives, hence,
three Maxwell relations follow. In practice, the most useful Maxwell relations are
obtained at a constant mole number, therefore, we restrict ourselves only to this case.
From the form of the differentials dU , dF , dH and dG, the following Maxwell re-
lations are derived:(

∂2U

∂S∂V

)
n

=
(

∂2U

∂V ∂S

)
n

⇒
(

∂T

∂V

)
S,n

= −
(

∂p

∂S

)
V,n

, (5.84)

(
∂2F

∂T ∂V

)
n

=
(

∂2F

∂V ∂T

)
n

⇒
(

∂S

∂V

)
T ,n

=
(

∂p

∂T

)
V,n

, (5.85)

(
∂2H

∂S∂p

)
n

=
(

∂2H

∂p∂S

)
n

⇒
(

∂T

∂p

)
S,n

=
(

∂V

∂S

)
p,n

, (5.86)

(
∂2G

∂T ∂p

)
n

=
(

∂2G

∂p∂T

)
n

⇒
(

∂S

∂p

)
T ,n

= −
(

∂V

∂T

)
p,n

. (5.87)

Maxwell relations are useful because they allow to express quantities that cannot
be easily determined in experiment in terms of other directly measurable quantities.
For instance, due to relation (5.85), we can determine the dependence of entropy
on volume at constant temperature by the measurement of pressure as a function of
temperature at constant volume.

5.4.3 Second Partial Derivatives of the Internal Energy and
Thermodynamic Potentials

We show below that the second derivatives of thermodynamic potentials are related
to the quantities that can be measured by standard methods. These quantities charac-
terize the behaviour of a system influenced by some changes in the surroundings, for
instance, a change in the volume of the system caused by an increase in the temper-
ature of the surroundings at constant pressure. We have already met some of these
quantities in Chap. 3. We assume again that the system contains a pure substance
and that the mole number does not change.

Gibbs Free Energy We begin with the calculation of the second derivatives of G:(
∂2G

∂T 2

)
p

= −
(

∂S

∂T

)
p

, (5.88)

(
∂2G

∂p2

)
T

=
(

∂V

∂p

)
T

, (5.89)
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∂2G

∂p∂T
=

(
∂V

∂T

)
p

, (5.90)

where we have suppressed the constant parameter n, to simplify the notation. We
recall that

cp = T

n

(
∂S

∂T

)
p

, (5.91)

denotes the molar heat capacity at constant pressure (see Sect. 4.3.4). We define two
more quantities: the isothermal compressibility,

κT = − 1

V

(
∂V

∂p

)
T

, (5.92)

and the thermal expansion coefficient,

α = 1

V

(
∂V

∂T

)
p

. (5.93)

The first one characterizes the relative change in the volume caused by the pres-
sure exerted on the system at constant temperature. The higher κT is, the easier to
compress the given substance. Gases are much more compressible than liquids and
solids. The second quantity characterizes the relative change in the volume caused
by an increase in the temperature of the system at constant pressure. The higher α is,
the more the substance can expand. The thermal expansion coefficient appeared al-
ready in Sect. 2.3.2, where we discussed thermometers (see (2.19)). Using relations
(5.88)–(5.90), we can express the second derivatives of G by cp , κT and α:

(
∂2G

∂T 2

)
p

= −ncp

T
,

(
∂2G

∂p2

)
T

= −nvκT ,
∂2G

∂p∂T
= nvα, (5.94)

where v = V/n. We show below that also the second derivatives of the Helmholtz
free energy, enthalpy and internal energy can be expressed in terms of cp , κT and α.

Helmholtz Free Energy For the function F , we have:
(

∂2F

∂T 2

)
V

= −
(

∂S

∂T

)
V

, (5.95)

(
∂2F

∂V 2

)
T

= −
(

∂p

∂V

)
T

, (5.96)

∂2F

∂V ∂T
= −

(
∂p

∂T

)
V

. (5.97)

We know that the molar heat capacity at constant volume (see Sect. 4.3.4) is defined
as

cv = T

n

(
∂S

∂T

)
V

. (5.98)
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Then we have (
∂p

∂V

)
T

=
(

∂V

∂p

)−1

T

= − 1

V κT

, (5.99)

where we have used (5.79) and (5.92). The derivative (∂p/∂T )V is transformed
according to (5.81):

(
∂p

∂T

)
V

= −
(

∂V

∂T

)
p

(
∂V

∂p

)−1

T

= α

κT

. (5.100)

Thus, we can express the second derivatives of F in the following form:(
∂2F

∂T 2

)
V

= −ncv

T
,

(
∂2F

∂V 2

)
T

= 1

nvκT

,
∂2F

∂V ∂T
= − α

κT

. (5.101)

It can be shown that cv can also be expressed by cp , α and κT . Applying (5.82)
to the parameters S, T , p and V , we get(

∂S

∂T

)
p

=
(

∂S

∂T

)
V

+
(

∂S

∂V

)
T

(
∂V

∂T

)
p

. (5.102)

Then using the Maxwell relation (∂S/∂V )T = (∂p/∂T )V and (5.100), and the defi-
nitions of cp , cv and α, we arrive at the following relation:

cp − cv = T vα2

κT

. (5.103)

The inequality cp > cv results from the fact that when a system absorbs heat at
constant pressure it also performs some work by increasing its volume, so the heat
absorbed is only partially used to warm the system. On the other hand, the whole
heat absorbed by a system at constant volume is used to increase its temperature.
Therefore, the same change in the temperature requires more heat in the former
case than in the latter. It is easy to show that in the case of the ideal gas, α = 1/T ,
κT = 1/p, and cp − cv = R.

Enthalpy For the function H , we have
(

∂2H

∂S2

)
p

=
(

∂T

∂S

)
p

, (5.104)

(
∂2H

∂p2

)
S

=
(

∂V

∂p

)
S

, (5.105)

∂2H

∂S∂p
=

(
∂T

∂p

)
S

. (5.106)

The derivative (∂T /∂S)p can be expressed by cp:
(

∂T

∂S

)
p

=
(

∂S

∂T

)−1

p

= T

ncp

. (5.107)
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Analogously with the isothermal compressibility, the adiabatic compressibility is
defined:

κS = − 1

V

(
∂V

∂p

)
S

. (5.108)

Here the entropy is constant, instead of temperature, because the compression oc-
curs without flow of heat, and in a reversible adiabatic process the entropy does not
change. Then, using (5.81), we transform (∂T /∂p)S as follows:(

∂T

∂p

)
S

= −
(

∂S

∂p

)
T

(
∂S

∂T

)−1

p

= T vα

cp

, (5.109)

where we have used Maxwell relation (5.87) and the definitions of α and cp . Thus,
we have(

∂2H

∂S2

)
p

= T

ncp

,

(
∂2H

∂p2

)
S

= −nvκS,
∂2H

∂S∂p
= T vα

cp

. (5.110)

Finally, we show that κS can also be expressed by κT , cp and α. To do this, we
apply (5.82) to the parameters V , p, S and T , which gives(

∂V

∂p

)
S

=
(

∂V

∂p

)
T

+
(

∂V

∂T

)
p

(
∂T

∂p

)
S

. (5.111)

Then, using the definitions of κT and α, and relation (5.109), we get

κT − κS = T vα2

cp

. (5.112)

It is more difficult to compress a system in an adiabatic process than in the isother-
mal one (κS < κT ) because its temperature increases during the adiabatic compres-
sion. Note also that the following relation results from (5.103) and (5.112):

κS

κT

= cv

cp

. (5.113)

Internal Energy For the second derivatives of U , we get(
∂2U

∂S2

)
V

=
(

∂T

∂S

)
V

, (5.114)

(
∂2U

∂V 2

)
S

= −
(

∂p

∂V

)
S

, (5.115)

∂2U

∂S∂V
=

(
∂T

∂V

)
S

. (5.116)

The derivatives (∂T /∂S)V and (∂p/∂V )S can be easily expressed by cv and κS ,
respectively, whereas(

∂T

∂V

)
S

= −
(

∂S

∂V

)
T

(
∂S

∂T

)−1

V

= − T α

ncvκT

, (5.117)
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where we have used (5.81), Maxwell relation (5.85), relation (5.100) and the defini-
tion of cv , hence(

∂2U

∂S2

)
V

= T

ncv

,

(
∂2U

∂V 2

)
S

= 1

nvκS

,
∂2U

∂S∂V
= − T α

ncvκT

. (5.118)

Finally, using relations (5.103) and (5.112), we can express cv and κS by cp , κT

and α.
To summarize, we have shown that all second derivatives of the thermodynamic

potentials and the internal energy, calculated at constant mole number, can be ex-
pressed in terms of three independent quantities related to the second derivatives of
the potential G, that is: cp , κT and α, and by T , v and n.

5.4.4 Reversible Adiabatic Process

We want to derive the equation of the adiabat, i.e., the relation between T and p,
V and p, or T and V in a reversible adiabatic process. As we know, in adiabatic
processes there is no flow of heat between the system and surroundings, and since
d̄Q = T dS in a reversible process, the condition d̄Q = 0 means that S = const.

First, we determine the dependence of pressure on temperature at constant S:

dp =
(

∂p

∂T

)
S

dT = cp

T vα
dT , (5.119)

where we have used (5.109). Equation (5.119) is the equation of the adiabat ex-
pressed in terms of the variables p and T . In general, we cannot integrate this equa-
tion because the coefficient at dT is a function of temperature and pressure. How-
ever, in the case of the ideal gas, we have pv = RT , α = 1/T and cp = (f + 2)R/2
(see (3.25)), hence

dp

p
= f + 2

2

dT

T
, (5.120)

which leads to the following equation of the adiabat:

pT −(f +2)/2 = const. (5.121)

If we want to express the equation of the adiabat in terms of V and p we proceed
analogously, i.e.,

dp =
(

∂p

∂V

)
S

dV = − 1

V κS

dV, (5.122)

where we have used (5.108). Applying relation (5.113) to the ideal gas, we get

κS = f

(f + 2)p
, (5.123)

hence
dp

p
= −f + 2

f

dV

V
. (5.124)
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Integrating this equation, we find the following equation of the adiabat:

pV (f +2)/f = const, (5.125)

which we derived already in Sect. 3.4. We can also derive equation (5.125), substi-
tuting T from the equation of state of the ideal gas into (5.121).

Finally, the equation of the adiabat in the variables V and T results from the
combination of Eqs. (5.119) and (5.122):

dT = − T α

ncpκs

dV, (5.126)

and for the ideal gas

dT

T
= − 2

f

dV

V
, (5.127)

which after integration gives

T V 2/f = const. (5.128)

5.4.5 Free Gas Expansion

We consider a vessel divided into two parts by a rigid wall and isolated from the
surroundings. One part of the vessel contains a gas in the volume Vi , whereas the
second part is empty. When the internal wall is removed the gas starts to expand
freely and eventually fills up the whole volume of the vessel, Vf . The initial state
and final state are equilibrium states, whereas the intermediate states are not because
we do not control the speed of the process. Therefore, the free gas expansion is not
a quasi-static process, hence, it is not reversible. There is no energy transfer because
the vessel forms an isolated system, which means that the internal energy of the gas
does not change. However, its temperature can change. We treat the temperature as
a function of the internal energy, volume and mole number (the latter is constant),
and its change in this process amounts to

Tf − Ti = T (U,Vf ) − T (U,Vi), (5.129)

where Ti and Tf denote the temperature of the initial and final states, respectively. If
the change in the gas volume, �V = Vf −Vi , is small then we can expand T (U,Vf )

in a Taylor series around Vi , hence

�T = Tf − Ti ≈
(

∂T

∂V

)
U

�V, (5.130)

where the derivative is calculated at V = Vi . To calculate this derivative, we use
identity (5.81): (

∂T

∂V

)
U

= − (∂U/∂V )T

(∂U/∂T )V
. (5.131)
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We know that (∂U/∂T )V = ncv (see (3.12)), whereas(
∂U

∂V

)
T

=
(

∂U

∂V

)
S

+
(

∂U

∂S

)
V

(
∂S

∂V

)
T

= −p + T

(
∂p

∂T

)
V

, (5.132)

where we have used (5.82) and Maxwell relation (5.85). Finally, using (5.100), we
get (

∂U

∂V

)
T

= −p + T α

κT

. (5.133)

In the ideal gas case, α = 1/T , κT = 1/p and (∂U/∂V )T = 0, hence �T = 0. For
real gases, we have

�T ≈ 1

ncv

(
p − T α

κT

)
�V. (5.134)

In a similar way, we determine the change in the gas entropy in the process, i.e.

�S = S(U,Vk) − S(U,Vp). (5.135)

Since (∂S/∂V )U = p/T , for a small change in the volume, we have

�S ≈ p

T
�V > 0. (5.136)

The process is irreversible because the entropy of the gas increases in an adiabati-
cally isolated system (see Sect. 4.6.2).

5.4.6 Joule–Thomson Process

The Joule–Thomson process is shown schematically in Fig. 5.2. The piston on the
left-hand side exerts a constant pressure pi on the gas in the left part of the vessel and
pushes it through a porous plug. The gas pressure on the right-hand side of the plug,
pf < pi , is also maintained constant due to the second piston. The whole system is
adiabatically isolated. Due to the flow through the porous plug, the gas warms up or
cools down, or its temperature does not change, depending on the initial temperature
and the initial and final values of the pressure.

First, we show that the enthalpy of the system at the beginning and at the end of
the process has the same value. We assume that the amount of the gas is constant
and that its volume and internal energy at the beginning and at the end of the process
amount to Vi , Ui and Vf , Uf , respectively. The work done on the gas in the left part
of the vessel amounts to piVi because its volume changes from Vi to zero at the
constant pressure pi . Analogously, the work done by the gas in the right part of the
vessel amounts to pf Vf . The internal energy of the system at the end of the process
is equal to

Uf = Ui + piVi − pf Vf . (5.137)
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Fig. 5.2 Joule–Thomson process. A gas is pushed through a porous material separating the two
parts of the vessel. The gas pressure in each part of the vessel is constant and amounts to pi and
pf < pi , respectively

As we know, the enthalpy H = U + pV , hence, we get

Hf = Hi, (5.138)

which means that �H = 0 in the Joule–Thomson process. We are interested how the
temperature changes in this process. If the change in the gas pressure caused by the
flow through the porous material is small we can calculate �T from the following
relation:

dT =
(

∂T

∂p

)
H

dp = − (∂H/∂p)T

(∂H/∂T )p
dp, (5.139)

where we have used (5.81). The denominator is equal to the heat capacity at constant
pressure, Cp (see (3.23)). Then we transform the nominator, using relation (5.82):(

∂H

∂p

)
T

=
(

∂H

∂p

)
S

+
(

∂H

∂S

)
p

(
∂S

∂p

)
T

= V + T

(
∂S

∂p

)
T

. (5.140)

From Maxwell relation (5.87) and from the definition of α (see (5.93)), it follows
that (∂S/∂p)T = −V α, and (

∂H

∂p

)
T

= V (1 − T α). (5.141)

Dividing the nominator and denominator in (5.139) by the mole number, we arrive
at the following expression:

dT = v(T α − 1)

cp

dp. (5.142)

For the ideal gas, α = 1/T , hence, dT = 0. In the case of real gases, dT > 0 if
T α > 1 and dT < 0 if T α < 1 because the pressure difference is positive. The tem-
perature at which T α = 1 is called the inversion temperature. In suitable conditions,
the Joule–Thomson process can be used to cool the gas down to the temperature of
condensation. First, however, the gas has to be cooled below its inversion tempera-
ture.

Finally, we calculate the change in the gas entropy in the Joule–Thomson process.
Since the enthalpy does not change in this process, we have

H(Sf ,pf ,n) = H(Si,pi, n). (5.143)
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If the pressure difference is small then

H(Sf ,pf ,n) ≈ H(Si,pi, n) + Ti�S + Vi�p, (5.144)

where �S = Sf − Si , �p = pf − pi , and we have used the relation: dH = T dS +
V dp, for n = const, hence

�S ≈ −Vi

Ti

�p > 0, (5.145)

for �p < 0. The process is irreversible because the entropy of the gas increases in
an adiabatically isolated system.

5.5 Intrinsic Stability of a System

So far we have considered only the conditions of thermodynamic equilibrium for
subsystems of a composite system, which follow from the entropy maximum prin-
ciple or the free-energy (of Helmholtz or Gibbs) minimum principle. In other words,
we have studied only the necessary condition for a maximum or minimum of a given
state function, that is, dS = 0, dF = 0 or dG = 0. Now we want to explore the con-
sequences of the fact that a given equilibrium state corresponds to a maximum of
entropy of a composite system. This means that we have to find the conditions for
the second partial derivatives of entropy.

We consider a one-component system, from which we separate a small subsys-
tem. We assume that the subsystem chosen can exchange heat with the complemen-
tary subsystem and can also change its volume but the mole numbers in the subsys-
tem, n, and in the complementary subsystem, n′, where n � n′, are constant. The
parameters corresponding to the subsystem are denoted by s (molar entropy), u (mo-
lar internal energy) and v (molar volume), and the parameters corresponding to the
complementary subsystem are denoted by s′, u′ and v′, respectively. The molar en-
tropy of both subsystems is the same state function, i.e., s = s(u, v), s′ = s(u′, v′),
because the subsystems are parts of the same system. The whole system is isolated
from the surroundings, therefore, the equilibrium state of the system corresponds to
a maximum of its entropy,

Stot = ns(u, v) + n′s
(
u′, v′), (5.146)

at constant internal energy and volume, hence

ndu + n′du′ = 0, (5.147)

ndv + n′dv′ = 0. (5.148)

As we know, the necessary condition for the maximum of the function Stot, i.e.,

dStot = nds + n′ds′ =
(

1

T
− 1

T ′

)
ndu +

(
p

T
− p′

T ′

)
ndv = 0, (5.149)
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where we have used (5.147) and (5.148), leads to the equality of temperatures,
T = T ′, and pressures, p = p′, in the subsystem chosen and in the complemen-
tary subsystem. Since equilibrium between the two subsystems corresponds to the
maximum of entropy of the whole system, the second differential of Stot must satisfy
the following condition:

d2Stot = nd2s + n′d2s′ < 0, (5.150)

where

d2s = 1

2

[
suu(du)2 + 2suvdudv + svv(dv)2], (5.151)

and an analogous expression can be written for d2s′. To simplify the notation, the
first derivatives of entropy with respect to u and v are denoted by su and sv , re-
spectively, and for the second derivatives we use the symbols suu, suv and svv ,
Note that because of conditions (5.147) and (5.148), we have du′ = −(n/n′)du and
dv′ = −(n/n′)dv, hence, the ratio of n′d2s′ to nd2s is proportional to n/n′ � 1.
Therefore, we can neglect the term n′d2s′ in expression (5.150) and consider the
condition

d2s < 0. (5.152)

Condition (5.152) means that any small subsystem of a homogeneous system must
be in thermodynamic equilibrium with the complementary subsystem.

Expression (5.151) is a quadratic form of du and dv. To determine its sign, it is
convenient to get rid of the mixed term by a suitable change of variables. Because
ds = (1/T )du + (p/T )dv, we have su = 1/T and sv = p/T , hence

dT −1 = suudu + suvdv, (5.153)

where we have simply used the fact that T = T (u, v). Substituting du determined
from (5.153) into (5.151), we get

d2s = 1

2

[
1

suu

(
dT −1)2 +

(
svv − s2

uv

suu

)
(dv)2

]
. (5.154)

Since dT −1 and dv are arbitrary, condition (5.152) is satisfied only if the coefficients
at (dT −1)2 and (dv)2 are negative. Using (3.12), we find that

suu =
(

∂T −1

∂u

)
v

= −T −2
(

∂u

∂T

)−1

v

= − 1

T 2cv

. (5.155)

To associate the second coefficient with a known physical quantity, we note that
putting T = const in (5.153), we get(

∂u

∂v

)
T

= − suv

suu

, (5.156)

hence

svv − s2
uv

suu

= svv + suv

(
∂u

∂v

)
T

=
(

∂sv

∂v

)
T

= 1

T

(
∂p

∂v

)
T

. (5.157)
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Using the definition of the isothermal compressibility, we express d2s as follows:

d2s = −1

2

[
cv

T 2
(dT )2 + 1

T vκT

(dv)2
]
. (5.158)

The inequality d2s < 0 holds if the conditions

cv > 0 and κT > 0 (5.159)

are satisfied. The first of them is called the condition of thermal stability. It states
that a flow of heat into the system must increase its temperature.The second con-
dition is the condition of mechanical stability, which means that compression of a
mechanically stable system must increase its pressure. If at least one of the condi-
tions (5.159) is not satisfied then the system cannot exist in a homogeneous form.
For instance, if the temperature and pressure are such that liquid water and water
vapour can exist simultaneously in the system then a change in the volume of the
system at constant temperature does not change its pressure; it changes only the pro-
portion of the liquid to the vapour. For such a system, (∂p/∂v)T = 0, which means
that the isothermal compressibility κT becomes infinite. Violation of an intrinsic
stability condition of a system is associated with a phase transition (see Chap. 6).

We note finally that the condition of mechanical stability can also be derived
from the Helmholtz free-energy minimum principle. Using a similar reasoning as
presented above to a system in thermal contact with a heat reservoir, we arrive at
the conclusion that for the molar Helmholtz free energy of a small subsystem, the
following inequality must hold:

d2φ > 0. (5.160)

It results from the fact that the state of thermodynamic equilibrium between the
small subsystem and the complementary subsystem corresponds to a minimum of
the Helmholtz free energy of the whole system at constant temperature. Since φ =
φ(T , v) and T = const, the condition

d2φ = 1

2

(
∂2φ

∂v2

)
T

(dv)2 = 1

2vκT

(dv)2 > 0, (5.161)

is equivalent to the condition κT > 0.

5.6 Exercises

5.1 Find the Legendre transform, Ψ (z), of the functions: Y(x) = Ax2 + Bx + C

and Y(x) = x + aex . Verify the relation dΨ/dz = −x.

5.2 In an isobaric process at the pressure p, the change in the internal energy and
volume of a system amounts to �U and �V , respectively. Find the change in the
enthalpy.
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5.3 In an isothermal process at the temperature T , the change in the internal energy
and entropy of a system amounts to �U and �S, respectively. Find the change in
the Helmholtz free energy.

5.4 Prove the following relations:(
∂F/T

∂T

)
V,n

= − U

T 2
,

(
∂G/T

∂T

)
p,n

= − H

T 2
.

(
∂H/p

∂p

)
S,n

= − U

p2
,

(
∂G/p

∂p

)
T ,n

= − F

p2
.

(
∂U/V

∂V

)
S,n

= − H

V 2
,

(
∂F/V

∂V

)
T ,n

= − G

V 2
.

5.5 The pressure and mole number in a system are constant. We assume that the
enthalpy of the system, H , is known in the range of temperature Ti ≤ T ≤ Tf , and
that the dependence of H on temperature can be neglected. Calculate the value of the
Gibbs free energy at the temperature Tf , provided that its value at the temperature
Ti amounts to Gi .

5.6 A certain thermodynamic system is described by the following fundamental
equation:

U = B
S3

nV
,

where B is a constant. Find the dependence of the pressure and temperature of the
system on its entropy, volume and mole number. What is the dependence of the
Gibbs free energy of the system on its natural variables?

5.7 Find the enthalpy and the Helmholtz and Gibbs free energy of a photon gas
whose internal energy U = γV T 4, and γ is a constant.

5.8 Find the dependence of the Helmholtz free energy, F(T ,V,n), on volume for
the van der Waals gas, using the equation of state

p = RT

v − b
− a

v2
,

where v = V/n.

5.9 What is the form of the internal energy, U(T ,V,n), for the van der Waals gas
if cv = 3R/2 and

p = RT

v − b
− a

v2
?

5.10 We have determined experimentally the molar heat capacity and constant pres-
sure as a function of temperature: cp = a + bT , where a and b are some constants.
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Calculate the change in the enthalpy and entropy of the system heated at constant
pressure from the temperature Ti to the temperature Tf .

5.11 Prove the identity: (
∂Cp

∂p

)
T ,n

= −T

(
∂2V

∂T 2

)
p,n

.

5.12 For many liquids and solids, the coefficient of thermal expansion α and the
isothermal compressibility κT are practically constant in the range of 50 atm and a
few tens of degrees centigrade around the room temperature. Using this fact, derive
an approximate equation of state, V = V (T ,p), for liquids and solids.

5.13 Derive the Maxwell relations for the thermodynamic potentials Ψ (S,V,μ)

and Θ(S,p,μ).

5.14 What are the natural variables of the potential ψ = Ψ/V (potential Ψ per unit
volume)? Express the differential dψ in the natural variables.

5.15 Show that the potential Θ(S,p,μ) can be expressed as Θ = ST (p,μ). What
is the form of dT in these variables?

5.16 Express the derivatives (∂v/∂μ)T and (∂s/∂μ)T , where v = V/n and s =
S/n, by κT and α.

5.17 The equation of state of a dilute gas can be expressed as follows:
pv

RT
= 1 + b(T )p.

Using this equation of state, derive the equation for the inversion temperature in the
Joule–Thomson process.



Chapter 6
Phase Transitions in Pure Substances

6.1 Concept of Phase

The phenomena of evaporation and freezing of liquids or melting and sublimation
of solids are well known to everybody from everyday experience. We can easily
observe some changes of the state of matter for such substances as water or carbon
dioxide. At atmospheric pressure, liquid water freezes, i.e., changes into solid (ice),
at the temperature of 0 °C, and at the temperature of 100 °C it changes into gaseous
state (water vapour or steam). The same substance which in some conditions exists
as a liquid in different conditions can exist as a solid or gas. We observe transforma-
tions of substances which change their physical properties even though the chemical
composition remains the same. In everyday life, we usually observe situations when
one state of matter (gaseous, liquid or solid) changes into another state of matter,
for instance, the liquid state changes into the solid or gaseous state. It is not a rule,
however. Some substances can exist in different forms even in the same state of
matter. For example, solid carbon can exist in the form of graphite or diamond. The
difference between these two forms results from different arrangement of atoms in
a periodic crystal structure, which leads to different physical properties of graphite
an diamond. Another example is helium at a temperature of a few kelvins. Even at
such low temperatures helium exists in the liquid state. Below the temperature of
2.17 K the liquid isotope of helium, 4He, can exist in two different forms called
He I and He II, depending on the pressure exerted. He I is a normal viscous liquid,
whereas He II exhibits an unusual property, called super-fluidity, which enables the
liquid to flow without friction even through very narrow capillaries. These examples
show clearly that the division of matter into three states only, i.e., the liquid, solid
and gaseous state, known from the basic course of physics, is insufficient to describe
a huge variety of forms of matter existence. Therefore, a more general concept of
phase is introduced.

Definition 6.1 Phase means any equilibrium state of a macroscopic system that is
homogeneous in respect of the physical properties and chemical composition.
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By homogeneity it is understood that properties of the system do not vary in a
scale much larger than the size of atoms or molecules. For instance, liquid water,
water vapour and ice are different phases of H2O. Similarly, graphite and diamond
are different phases of carbon, and He I and He II are different phases of liquid
helium at low temperatures. At higher temperatures, helium exists in the gaseous
state.

In what follows, we assume that the temperature and pressure are the state param-
eters that can be controlled, therefore, the Gibbs free energy is the suitable thermo-
dynamic potential to describe a given system (see Chap. 5). Any homogeneous and
intrinsically stable state of the system corresponds to a certain phase. It may hap-
pen, however, that for some values of temperature and pressure, the homogeneous
state ceases to be intrinsically stable. Then the system must split into homogeneous
subsystems corresponding to different phases. The process of transformation of one
phase to another phase is called a phase transition.

Definition 6.2 Phase transition is a qualitative change occurring in a system due
to variations of external conditions, such as temperature, pressure and electric or
magnetic fields.

Freezing and evaporation of water, change of diamond into graphite or He I into
He II are examples of phase transitions. For instance, when water is cooled at atmo-
spheric pressure down to the temperature of 0 °C, we observe that small pieces of
ice appear. Instead of a homogeneous liquid both the liquid and solid are present in
the system. The system is no longer homogeneous as a whole but both liquid water
and ice form homogeneous subsystems which are single phases.

6.2 Classification of Phase Transitions

Phase transitions are either of first order or continuous; the latter are also referred to
as second-order phase transitions. Most of the phase transitions that we know from
everyday life are of first order, for instance, the transition from liquid water to ice or
to vapour.

6.2.1 First-Order Phase Transitions

First-order phase transitions are characterized by discontinuous changes of physical
properties of a system. For instance, during a first-order phase transition the mo-
lar volume and molar entropy change discontinuously. We know very well that the
density of ice is smaller than the density of liquid water because ice floats on the
surface of the liquid. For most substances, however, it is the other way round, that
is, the liquid phase has smaller density than the solid phase. In this respect (and
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not only in this one) water is an untypical substance. The discontinuity in the molar
entropy results in the heat of transition. For instance, to change ice into liquid wa-
ter, about 6 kJ of heat per mole has to be supplied. This phenomenon is commonly
known as melting, and the corresponding heat of transition, as the heat of melting.
Similarly, a transformation of one mole of a liquid into gas, i.e., evaporation of the
liquid, requires a definite amount of heat called the heat of evaporation. A direct
transition from the solid phase to the gas phase, called sublimation, is also a first-
order phase transition, and the heat associated with this transition is called the heat
of sublimation.

First-order phase transitions are associated with phase coexistence. For example,
at atmospheric pressure, ice and water coexist at the temperature of 0 °C. Complete
transformation of ice into water requires that a definite amount of heat is absorbed by
the system, but during the transition the temperature of the system does not change.
Liquid water gives off the same amount of heat to the surroundings when it freezes.
A similar phenomenon of phase coexistence occurs in the case of a liquid and its
vapour. If the liquid does not fill the whole volume of a closed vessel, from which
air has been pumped out, then the space above the liquid surface is filled with its
vapour which coexists with the liquid at a definite pressure. Varying the volume of
the vessel at constant temperature with a piston, for instance, we change the amounts
of the liquid and vapour, but the pressure in the system does not change. A decrease
in the vessel volume causes condensation of a certain amount of vapour, which is
associated with a flow of heat from the system to surroundings, whereas an increase
in the vessel volume results in evaporation of a certain amount of liquid at the cost
of heat drawn from the surroundings.

6.2.2 Continuous Phase Transitions

Phase transitions in which all properties of a system vary continuously are called
continuous phase transitions. In contrast to first-order phase transitions, in which
two phases can coexist, during a continuous transition one phase is immediately
replaced by another phase. This is caused by the lack of heat of transition, because
in continuous transitions, the molar entropy is a continuous function of the state
parameters

A typical example of a continuous phase transition is the transition from the
paramagnetic phase to the ferromagnetic phase, which occurs in iron at the tem-
perature TC = 1043 K, called the Curie temperature. Paramagnetic material is not
magnetized in the absence of the magnetic field B, and in the presence of B its
magnetization M is proportional to B. In the case of a ferromagnetic material, the
magnetization does not vanish even when the magnetic field is switched off. The
temperature dependence of the magnitude of the magnetization for B = 0, denoted
|M0|, is shown schematically in Fig. 6.1. For T > TC , M0 = 0, and for T < TC ,
M0 �= 0. The magnetization M0 is a continuous function also at the transition tem-
perature TC . The molar entropy is also continuous. However, the derivative of |M0|
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Fig. 6.1 Magnitude of the
magnetization as a function of
temperature at zero magnetic
field, for a ferromagnetic
material such as iron. TC

denotes the temperature of a
continuous transition from
the paramagnetic phase to the
ferromagnetic phase

with respect to temperature is discontinuous at TC . As it is shown in Fig. 6.1, for
T < TC , d|M0|/dT → ∞ when T → TC , and for T > TC , d|M0|/dT = 0. In con-
tinuous phase transitions, also other quantities can diverge to infinity. These quanti-
ties are related to the rates of change in physical properties of a system. For instance,
heat capacity is proportional to the rate of change in entropy with temperature. To
summarize, in continuous phase transitions, the properties of a system change con-
tinuously at the transition, but the rates of change of these properties are discontin-
uous or divergent.

In particular conditions, the transition from a liquid to gas also becomes contin-
uous. The line of liquid–gas coexistence terminates at a critical point in which the
difference between the two phases disappears, including the heat of transition (see
Sect. 6.4.1). However, the continuous transition from the paramagnetic phase to the
ferromagnetic phase has a different character, i.e., it is not related to any critical
point at the end of a first-order transition line. In this case, the continuous phase
transition is related to a physical quantity called the order parameter. In a material
such as iron, microscopic magnetic dipole moments exist which can order along a
common direction not only in an external magnetic field, but also spontaneously
due to interactions between them. This spontaneous ordering is possible only be-
low the Curie temperature. The magnetization of the whole sample is a resultant
magnetic dipole moment; M = 0 means lack of ordering, and M �= 0 means that
microscopic magnetic dipole moments are ordered to a certain degree, and |M| is a
measure of the degree of that order. Therefore, the magnetization M can be treated
as an order parameter in ferromagnetic systems such as iron. Continuous phase tran-
sitions belong to the order-disorder transition type,1 which means that they occur in
systems for which an order parameter can be defined. Obviously, the choice of the
order parameter depends on a given physical system. A whole branch of condensed
matter physics, called critical phenomena, is devoted to the studies of continuous
phase transitions and non-analytic behaviour of various physical quantities associ-
ated with these transitions. These interesting problems are beyond the scope of this
book, however. In what follows, we discuss only first order phase transitions, which
are more often met in everyday life than continuous transitions.

1Phase transitions of this type can also be of first-order, e.g., the transition from a liquid to a
crystalline solid.
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6.2.3 Ehrenfest Classification

The classification of phase transitions proposed by Ehrenfest is based on the con-
tinuity of derivatives of the chemical potential μ with respect to temperature and
pressure. The chemical potential, as well as temperature and pressure, is continuous
at a phase transition, which is required by the conditions of thermal, mechanical
and with respect to matter flow equilibrium. However, the derivatives of μ do not
have to be continuous. If the first derivatives: s = −(∂μ/∂T )p and v = (∂μ/∂p)T
(see (5.31)), i.e., the molar entropy and molar volume, are discontinuous then the
transition is of first order, according to the Ehrenfest classification. By analogy,
Ehrenfest considered the transition to be of nth order if at least one of the nth order
partial derivatives of μ is discontinuous at the transition, and all lower-order deriva-
tives of μ are continuous. For instance, in a second-order transition, s and v are
continuous and at least one of the second-order derivatives of μ is discontinuous at
the transition.

The Ehrenfest classification is mainly of historical importance. Nowadays the
transition is said to be of first order if the heat of the transition does not vanish,
i.e., the molar entropy is discontinuous. All transitions in which first-order partial
derivatives of μ are continuous are called continuous phase transitions (of second
order according to the Ehrenfest classification). Modern theories of phase transitions
study non-analytic behaviour of thermodynamic potentials in the neighbourhood of
continuous phase transitions. The non-analytic behaviour shows up in divergences
of various quantities, such as heat capacity, compressibility or magnetic susceptibil-
ity (in ferromagnetic systems), which are related to second-order partial derivatives
of thermodynamic potentials. The Ehrenfest classification does not include this type
of behaviour, however.

6.3 Conditions of Phase Coexistence

6.3.1 Two-Phase Coexistence

We consider a closed one-component system composed of two subsystems: the
phases α and β . The temperature T and pressure p in the system are constant. We
recall that the Gibbs free energy of a pure substance is given by (see Sect. 5.1.4):

G = U − T S + pV = μn, (6.1)

where U , S, V , μ and n denote, respectively, the internal energy, entropy, volume,
chemical potential and mole number, and

dG = −SdT + V dp + μdn. (6.2)

Substituting n = 1 mol in (6.2), we obtain the Gibbs–Duhem equation (see (5.30)):

dμ = −sdT + vdp, (6.3)
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where s = S/n and v = V/n denote the molar entropy and molar volume. Equa-
tion (6.3) simply expresses the fact that the chemical potential is a function of tem-
perature and pressure.

Our purpose is to derive the condition of coexistence of two phases. The Gibbs
free energy of the whole system, G, amounts to:

G = nαμα(T ,p) + nβμβ(T ,p), (6.4)

where μα , μβ and nα , nβ denote the chemical potentials and mole numbers for the
phases α and β , respectively. For each phase, the Gibbs–Duhem equation holds, i.e.,

dμα = −sαdT + vαdp, (6.5)

dμβ = −sβdT + vβdp. (6.6)

The system is in contact with a heat and volume reservoir at the temperature T and
pressure p, and we have

nα + nβ = n, (6.7)

where the total mole number in the system, n, is constant (closed system). However,
the matter can flow between the two phases because there is no physical barrier
between them. The process of transformation of one phase into the other phase is
reversible, which means that �G = 0 in this process (see Corollary 5.3). Using (6.4)
and the condition �nα + �nβ = 0, we get:

�G = (
μα − μβ

)
�nα = 0. (6.8)

From the fact that �nα can be arbitrary, we draw the following conclusion.

Corollary 6.1 Phases α and β coexist if their chemical potentials are equal, i.e.,

μα = μβ.

The chemical potentials μα and μβ are different functions of temperature and
pressure. Therefore, the condition μα(T ,p) = μβ(T ,p) defines a certain line in the
Tp plane, which is called the two-phase coexistence line. The dependence of the
chemical potential on temperature at constant pressure, in the neighbourhood of a
phase transition, is shown schematically in Fig. 6.2. The broken line marks the tran-
sition temperature. Note that in Fig. 6.2 the lines corresponding to μα and μβ do not
terminate at the transition temperature. This means that the phase α can exist, i.e.,
can be intrinsically stable, also in a certain range of temperature above the transi-
tion temperature, even though the phase β corresponds to a lower value of the Gibbs
free energy. Similarly, the phase β can exist in a certain range of temperature below
the transition temperature. Such states are called metastable states. For instance, if
very clean water is cooled slowly at atmospheric pressure it can remain in the liquid
state even down to −42 °C. Such a state is called a super-cooled liquid. However,
it is not thermodynamically stable and even a small perturbation can cause its crys-
tallization, i.e., transition to a state of the minimal value of the Gibbs free energy.
Similarly, it is possible to observe a super-heated liquid or super-saturated vapour.



6.3 Conditions of Phase Coexistence 129

Fig. 6.2 Chemical potential
as a function of temperature
at constant pressure (solid
line) in the neighbourhood of
a first-order phase transition.
The intersection of μα(T )

and μβ(T ) corresponds to the
transition temperature
(broken line)

The Gibbs free energy of a system in which two phases coexist has the same
form as in the case of a homogeneous system, i.e.,

G = nαμα + nβμβ = nμcoex; (6.9)

where μcoex = μα = μβ denotes the value of the chemical potential at the coex-
istence. Only one intensive parameter, T or p, is independent, as the second one
follows from the condition μα(T ,p) = μβ(T ,p). Since the total mole number is
constant, the remaining state parameter of the two-phase system can be nα , for in-
stance. Its value can vary from nα = 0 to nα = n, but the value of G does not depend
on nα . Note that the condition of two-phase coexistence reduces the number of in-
dependent intensive parameters by one, therefore, an additional extensive parameter
is needed to completely define the state of the two-phase system. Instead of nα or
nβ , we can also choose the total volume, V , or the total entropy, S, of the two-phase
system, where

V = nαvα + nβvβ, (6.10)

S = nαsα + nβsβ, (6.11)

and vα , vβ and sα , sβ denote, respectively, the molar volume and molar entropy of
the coexisting phases.

Helmholtz Free Energy of Two-Phase Systems We assume here that T , V and
n are the independent parameters of state. Varying T or V at constant n, we can
change nα and nβ . If we denote by v = V/n the mean molar volume of the two-
phase system then, from conditions (6.7) and (6.10), we get

nα = n
v − vβ

vα − vβ
, nβ = n

vα − v

vα − vβ
, (6.12)

hence, the proportion of the coexisting phases is determined by the following lever
rule:

nα
(
vα − v

) = nβ
(
v − vβ

)
. (6.13)

For instance, if a liquid and vapour coexist in a closed vessel then a decrease in the
volume V results in condensation of a certain amount of vapour. The pressure in the
system does not change until the gas phase disappears completely from the system.
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In the process described above, G does not change because T , p and n are con-
stant, but the Helmholtz free energy F changes. From the Euler relation (see (4.60)),
it follows that F = U −T S = −pV +μn, hence, for the two-phase system we have

F = Fα + Fβ = −pcoex
(
V α + V β

) − μcoex
(
nα + nβ

) = −pcoexV + μcoexn,

(6.14)

where V α = nαvα and V β = nβvβ , and pcoex is the pressure at coexistence, i.e., the
root of the equation μα(T ,p) = μβ(T ,p) at a given temperature. Relation (6.14)
defines the function F(T ,V,n) because μcoex and pcoex depend on temperature. It
is easy to show that the following relations are satisfied:

(
∂F

∂T

)

n,V

= −S,

(
∂F

∂V

)

T ,n

= −pcoex,

(
∂F

∂n

)

T ,V

= μcoex. (6.15)

The last two relations follow from the linear dependence of F on n and V . To derive
the first relation, we notice that Fα = Fα(T ,V α,nα), where nα and V α depend on
T , and Fβ has an analogous form, hence
(

∂Fα

∂T

)

V,n

+
(

∂Fβ

∂T

)

V,n

= −Sα − Sβ − pcoex
d(V α + V β)

dT
+ μcoex

d(nα + nβ)

dT
,

(6.16)

where Sα = nαsα and Sβ = nβsβ . Because of the relations V α + V β = V and nα +
nβ = n, only the term −Sα − Sβ = −S remains on the right-hand side. A change
in F at constant T and n is equal to the work done on the system, i.e., �F =
−pcoex�V .

Enthalpy of Two-Phase Systems We assume here that p, S and n are the inde-
pendent parameters of state. For the given pressure p, the temperature of a first-order
phase transition, that is, the temperature of the two-phase coexistence, is a root of
the equation μα(T ,p) = μβ(T ,p). Varying p or S at constant n, we change nα

and nβ . They are determined from relations (6.7) and (6.11):

nα = n
s − sβ

sα − sβ
, nβ = n

sα − s

sα − sβ
, (6.17)

hence an alternative form of the lever rule follows:

nα
(
sα − s

) = nβ
(
s − sβ

)
. (6.18)

For instance, if a liquid and vapor coexist in a closed vessel then the heat supplied
to the system and constant pressure is used up to evaporate a part of the liquid and
to perform work. The temperature does not change until the whole liquid phase
disappears.

The thermodynamic potential whose natural variables are S, p and n is the en-
thalpy H . From the Euler relation, it follows that H = U + pV = T S + μn, hence,
for the two-phase system we have

H = Hα + Hβ = Tcoex
(
Sα + Sβ

) + μcoex
(
nα + nβ

) = TcoexS + μcoexn. (6.19)
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Relation (6.19) defines the function H(S,p,n), since Tcoex and μcoex are functions
of p. Analogously to the case of the Helmholtz free energy, we derive the following
relations:

(
∂H

∂S

)

p,n

= Tcoex,

(
∂H

∂p

)

S,n

= V,

(
∂H

∂n

)

S,p

= μcoex. (6.20)

Heat supplied to the system at constant pressure in a reversible process is equal to
the change in its enthalpy. From relation (6.19), we have �H = Tcoex�S, since p

and n are constant, and Tcoex and μcoex depend only of p. From the last relation,
we can determine the change in the entropy of the two-phase system and then the
change in nα and nβ (see (6.11)).

6.3.2 Three-Phase Coexistence

The condition of coexistence of three phases: α, β and γ , is equivalent to two condi-
tions of two-phase coexistence, for instance, μα(T ,p) = μβ(T ,p) and μα(T ,p) =
μγ (T ,p), from which the equality μβ(T ,p) = μγ (T ,p) also follows. Each of these
conditions defines a line in the Tp plane, and two independent conditions define the
intersection of two lines, which is the point of three-phase coexistence called the
triple point. For instance, the triple point of water, at which liquid water, ice and
water vapour coexist, is defined by the temperature of 273.16 K (0.01 °C) and pres-
sure of 611.73 Pa (4.59 torr). The temperature of the triple point of water is thus
slightly higher than the temperature of freezing at the pressure of 1 atm. In a pure
substance, at most three phases can coexist. We shall see that in the case of mixtures,
the maximum number of coexisting phases depends on the number of components.

At the triple point, the intensive parameters T , p and μ, have definite values,
denoted by Ttrp, ptrp and μtrp, respectively. The Gibbs potential of the three-phase
system amounts to

G = nαμα + nβμβ + nγ μγ = nμtrp, (6.21)

which means that it does not depend on the amounts of individual phases. An equi-
librium state of the system is defined by three extensive parameters, which we as-
sume to be: S, V and n, where

S = nαsα + nβsβ + nγ sγ , (6.22)

V = nαvα + nβvβ + nγ vγ , (6.23)

n = nα + nβ + nγ . (6.24)

The inversion of these relations gives

nα = n

D

[(
sβ − s

)(
vγ − v

) − (
sγ − s

)(
vβ − v

)]
, (6.25)

nβ = n

D

[(
sγ − s

)(
vα − v

) − (
sα − s

)(
vγ − v

)]
, (6.26)

nγ = n

D

[(
sα − s

)(
vβ − v

) − (
sβ − s

)(
vα − v

)]
, (6.27)
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where D = sαvβ − sβvα + sβvγ − sγ vβ + sγ vα − sαvγ . For instance, if s = sα and
v = vα , then nα = n and nβ = nγ = 0, and analogously for the other phases. S, V

and n are the natural variables of the internal energy U . Using the Euler relation, we
find the following form of U for the three-phase system:

U = Uα + Uβ + Uγ = TtrpS − ptrpV + μtrpn, (6.28)

hence
(

∂U

∂S

)

V,n

= Ttrp,

(
∂U

∂V

)

S,n

= −ptrp,

(
∂U

∂n

)

S,V

= μtrp. (6.29)

Let us assume that we have prepared a system in which three phases coexist, for
instance, ice, liquid water and water vapour. We can change the proportion of
the phases, changing the volume of the system in a reversible adiabatic process
(S = const). Alternatively, we can supply heat to the system at V = const, i.e., in a
reversible isochoric process. In both processes, the temperature and pressure remain
constant until one of the coexisting phases disappears.

6.4 Phase Diagrams

The regions in which individual phases exist are presented in the form of phase dia-
grams, usually in the plane spanned by T and p. The border lines between different
regions correspond to phase transitions. In this section, we present a few examples
of phase diagrams.

6.4.1 Phase Diagram of a Typical Substance

The phase diagram of a typical substance in the Tp plane is shown in Fig. 6.3. The
two-dimensional regions correspond to the gaseous, liquid and solid phases. The
solid lines correspond to the gas–liquid, liquid–solid and gas–solid coexistence. All
two-phase coexistence lines meet at the triple point. The liquid–solid coexistence
line, called the melting line, has a positive slope for typical substances. We will
show that it occurs when the molar volume of the liquid is larger than the molar
volume of the solid. In the case of water, it is the other way round, i.e., the slope of
the liquid–solid coexistence line is negative (see Fig. 6.5).

Note the difference between the liquid–gas and liquid–solid coexistence lines.
The first terminates in the critical point defined by the critical temperature Tcr and
critical pressure pcr. At the critical point, the difference between the liquid and
vapour disappears. Approaching the critical point along the liquid–gas coexistence
line, we observe that the density of the vapour increases and the density of the
liquid decreases, and at the critical point they become equal to each other. Then the
interface between the two phases disappears. The heat of evaporation also vanishes
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Fig. 6.3 Phase diagram of a
typical pure substance

at the critical point. When T > Tcr it is not possible to liquefy gas, irrespective of
the pressure applied. Above the critical temperature, there exists one phase called
the super-critical phase. It is a gaseous phase although its density is rather liquid
like close to the critical point.

The arrow in Fig. 6.3 marks the continuation of the liquid–solid coexistence line.
Why does not it terminate in a critical point, as the liquid–gas coexistence line does?
In a liquid, as in a gas, the motion of molecules is chaotic. A single molecule is not
related to any particular space point. In a crystalline solid, molecules can only os-
cillate around specific points that form a well defined three-dimensional periodic
structure. Such a structure cannot appear gradually in a continuous fashion. There-
fore, the line of the transition from a liquid to a crystalline solid cannot terminate in
a critical point, at which the difference between two phases disappears by definition.

What does it mean in practice that the liquid–gas coexistence line terminates in
a critical point? Looking at Fig. 6.3, we can see that it is possible to carry out a
process which transforms a liquid into a gas or vice versa without crossing of the
transition line. An example of such a process is shown in Fig. 6.4 with the broken
line. For instance, the process begins in the liquid phase, close to the liquid–gas
coexistence line, and ends also close to the coexistence line but on the other side
in the gaseous phase. At any moment during the process, we do not observe the
interface between the liquid and vapour, because the broken line does not cross the
coexistence line. This shows that it is possible to transform a liquid into a vapour
in such way that during the process we do not observe any qualitative changes in
the system. Therefore, according to Definition 6.2, the process considered is not a
phase transition.

For a temperature T between the triple and critical points, the pressure of sat-
urated vapour, meaning the vapour which coexists with the liquid, is equal to
pcoex(T ). It is the pressure of the vapour that fills the space above the liquid in a
closed vessel from which air has been pumped out. On the other hand, a liquid in
an open vessel feels atmospheric pressure. When it is heated, the process of evapo-
ration proceeds from the surface as long as the saturated vapour pressure is smaller
than atmospheric pressure. If they are equal the process of evaporation becomes
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Fig. 6.4 Example of a
process (broken line) in
which a liquid changes into a
vapour in a continuous way,
i.e., without a phase
transition. For clarity, only
the liquid–gas coexistence
line (solid line) is shown

violent because vapour bubbles form in the whole volume of the liquid. This very
well known phenomenon is called boiling, and the temperature at which the satu-
rated vapour pressure is equal to the external pressure is called the boiling point.
The normal boiling point corresponds to the pressure of 1 atm.

A substance whose phase diagram looks like that in Fig. 6.3 is carbon dioxide,
for instance. The coordinates of the triple point of CO2 are: 217 K and 5.11 bar, and
the coordinates of the critical point: 304 K and 72.8 bar. As we can see, the pressure
of the triple point is much higher than atmospheric pressure. This means that CO2

does not exist in the liquid state at atmospheric pressure but it undergoes a direct
transition from the solid to gas (at 195 K at the pressure of 1 bar). For this reason,
solid carbon dioxide is called the dry ice.

6.4.2 Phase Diagram of Water

The phase diagram of water is shown in Fig. 6.5. The black circles mark the triple
and critical points. In the range of pressure up to 2000 bar, liquid water coexists
with the solid phase called ice Ih. The melting line has a negative slope and is al-
most vertical, which means that even large variations of pressure cause only slight
changes in the melting point. The negative slope of the melting line is related to
hydrogen bonds between water molecules. In the solid phase, water molecules are
more loosely packed than in the liquid phase, therefore the density of ice is smaller
than the density of liquid water. In the high pressure region, liquid water can co-
exist with other crystalline structures of ice, marked with the numbers: III, V, VI.2

For pressures above 2000 bar, the slope of the melting line becomes positive. For
instance, the melting point of ice VII, which is not shown in Fig. 6.5, can exceed
100 °C, but this phase exists for pressures above 22 000 bar.

2It turned out that the form denoted previously as ice IV does not exist.
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Fig. 6.5 Phase diagram of water; note the logarithmic scale of pressure. In the inset, the region
marked as ice II, III, V, VI is shown in more detail. These crystalline structures of ice, not singled
out in the main plot, differ from the solid phase denoted ice Ih. The phase diagram is not complete,
as it does not show all known structures of ice that exist at higher pressures or lower temperatures

Fig. 6.6 Phase diagram of
4He

6.4.3 Phase Diagram of 4He

Figure 6.6 shows schematically the phase diagram of 4He. As we have already men-
tioned there exist two liquid phases: He I and He II, where He II denotes the su-
perfluid phase. The He I–gas coexistence line ends in a critical point but it does
not intersect the solid–liquid coexistence line, which means that there is no triple
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Fig. 6.7 Temperature
dependence of the molar heat
capacity at constant pressure
close to the continuous phase
transition from He I to He II

point at which the gaseous, liquid and solid phases coexist. There exists, however,
a line of continuous transition between the liquid phases: He I and He II, called the
λ-transition. To distinguish it from the first-order transition lines, it is represented
by the broken line in Fig. 6.6. The name of the transition comes from the form of de-
pendence of the molar heat capacity, cp , on temperature, which resembles the Greek
letter lambda (Fig. 6.7). At the transition temperature Tλ, cp(T ) has a singularity,
i.e., it is a non-analytic function of temperature. We recall that cp is related to the
molar enthalpy, h = H/n, and to the molar entropy, s = S/n, as follows:

cp =
(

∂h

∂T

)

p

= T

(
∂s

∂T

)

p

. (6.30)

Obviously the amount of heat needed to change the temperature of the system by
�T = T2 −T1 must be finite. If T1 < Tλ < T2 then the change in the molar enthalpy
amounts to

�h =
∫ T2

T1

cp(T )dT (6.31)

and is finite. For T1 → T2, �h → 0 which means that an infinitesimal amount of
heat absorbed by the system causes one phase to change into the other phase. This
is because the λ-transition is continuous.

Figure 6.8 shows schematically the shape of the functions s(T ) and cp(T ) in the
neighbourhood of a continuous phase transition at the temperature Ttr. The molar
entropy is a continuous function of temperature but its derivative is discontinuous
or divergent at T = Ttr. In the second case, cp(T ) diverges at the transition temper-
ature. The type of this divergence depends on a physical system but often it has the
following form near Ttr:

cp(T ) = A|T − Ttr|−α, (6.32)

where the exponent α is positive and the coefficient A does not depend on T . If
α < 0 then cp(T ) has a sharp but finite maximum at the transition temperature. For
instance, in the case of the λ-transition in 4He (see Fig. 6.7) α has a small negative
value of the order −0.01.
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Fig. 6.8 Temperature dependence of: (a) the molar entropy, (b) the molar heat capacity at constant
pressure, in the neighbourhood of a continuous phase transition

Fig. 6.9 Temperature dependence of: (a) the molar entropy, (b) the molar heat capacity at constant
pressure, in the neighbourhood of a first-order phase transition; �s denotes the jump of the molar
entropy at the transition temperature Ttr

It is instructive to compare the behaviour of s(T ) and cp(T ) close to the transition
temperature for continuous and first-order transitions. As we know, in the latter case,
s(T ) is discontinuous at the transition temperature, which is shown in Fig. 6.9a.
Using expression (6.30), we present �h for T1 < Ttr < T2 as follows:

�h =
∫ T2

T1

T
∂s

∂T
dT = T2s(T2) − T1s(T1) −

∫ T2

T1

s(T )dT , (6.33)

where we have integrated by parts. In the limit T1 → T2, we get

�h = Ttr�s. (6.34)

As we know, �h is equal to the heat received by a system at constant pressure, and
in this case it is equal to the heat of transition per mole. The dependence of cp on
temperature is shown in Fig. 6.9b. The derivative ∂s/∂T at T = Ttr does not exist
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in ordinary sense, since s(T ) is discontinuous.3 Dividing �h by �T = T2 − T1,
for T1 < Ttr < T2, and taking the limit T1 → T2, we obtain infinite value of cp .
However, if both T1 and T2 are smaller or larger than Ttr then cp(T ) tends to a
finite value when T1 and T2 tend to Ttr. This mean that the function cp(T ) can be
represented schematically by the shape shown in Fig. 6.9b. Comparing Fig. 6.9b
with Fig. 6.8b, we can see that in the case of a continuous transition, cp(T ) tends
gradually to infinity when T → Ttr, or to a finite maximum, as in the case of the
λ-transition.

6.5 Two-Phase Coexistence Lines

Our present aim is to derive a general formula for a two-phase coexistence line. We
recall that two phases can coexist only in the case of a first-order phase transition.
For substances such as water (H2O) or carbon dioxide (CO2), we consider three two-
phase coexistence lines, i.e., the evaporation (or condensation) line, the melting (or
freezing) line and the sublimation (or deposition) line, where the names in brackets
correspond to the reverse process. Below we consider a first-order phase transition
in a pure substance, denoted α → β , at which a phase α changes into a phase β .

6.5.1 Clapeyron Equation

We denote the dependence of pressure on temperature along the coexistence line by
pcoex(T ). Two phases coexist when their chemical potentials are equal (see Corol-
lary 6.1), hence

μα
(
T ,pcoex(T )

) = μβ
(
T ,pcoex(T )

)
(6.35)

Differentiating both sides of (6.35) with respect to temperature, we get:
(

∂μα

∂T

)

pcoex

+
(

∂μα

∂pcoex

)

T

dpcoex

dT
=

(
∂μβ

∂T

)

pcoex

+
(

∂μβ

∂pcoex

)

T

dpcoex

dT
. (6.36)

Then we use the relations: (∂μ/∂T )p = −s and (∂μ/∂p)T = v, to transform (6.36)
into the form called the Clapeyron equation:

dpcoex

dT
= �s

�v
, (6.37)

where �s = sβ − sα and �v = vβ − vα denote, respectively, the changes in the
molar entropy and volume at the transition α → β . Since the molar enthalpy h =
μ + T s, and �μ = μβ − μα = 0, hence, �h = T �s, where �h = hβ − hα . This

3The derivative of a discontinuous function close to the point of discontinuity is represented by a
distribution called the Dirac δ-function.
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shows that the Clapeyron equation relates the slope of the coexistence line with the
enthalpy of the transition �h and the change in the molar volume �v as follows:

dpcoex

dT
= �h

T �v
. (6.38)

The quantities �h and �v depend only on the temperature because they are defined
on the coexistence line. If we assume that �h > 0 for the transition α → β then the
sign of the derivative dpcoex/dT is determined by the sign of �v.

6.5.2 Solid–Liquid Coexistence

We denote the solid and liquid phases with the indices s and l, respectively. To melt
a solid, heat has to be supplied to the system, therefore, the enthalpy of melting is
positive, i.e., �h = hl − hs > 0. In the case of typical substances, e.g. CO2, also
�v = vl − vs > 0, hence, dpcoex/dT > 0 (Fig. 6.3). For anomalous substances, e.g.
H2O, �v < 0, hence, also dpcoex/dT < 0 (Fig. 6.5), which means that an increase
in pressure lowers the melting point.

If �h and �v are approximately constant in a certain range of temperature then
Eq. (6.38) can be integrated to give

pcoex(T ) = pcoex(T0) + �h

�v
ln

T

T0
, (6.39)

where T0 denotes a reference temperature. When the relative change in temperature,
(T − T0)/T0, is small we have ln(T /T0) ≈ (T − T0)/T0 and Eq. (6.39) adopts a
simpler form:

pcoex(T ) ≈ pcoex(T0) + �h

T0�v
(T − T0). (6.40)

Example 6.1 The heat of melting of ice at the temperature T0 = 273.15 K is
equal to �h = 6.01 kJ/mol, and �v = −1.7 cm3 mol−1, hence, �h/(T0�v) =
−127.7 atm K−1, and pcoex(T0) = 1 atm. To lower the melting point of ice by only
1 °C below zero, the pressure must exceed atmospheric pressure by almost 128 atm.
We can estimate the drop in the melting point of ice caused by a skater weighting
70 kg. Assuming 30 cm for the length of a skate and 2 mm for the width of its
blade, we obtain the pressure p ≈ (70 × 9.81/6) N cm−2, which is about 11 atm,
provided that only one skate touches the ice surface. Thus, the drop in the melting
point caused by the skater amounts to about 0.1 °C, which can explain the effect
of sliding only at a temperature close to 0 °C. Then what causes sliding at lower
temperatures? It is known that friction between ice and the blade of a skate is an
important factor. It provides a sufficient amount of heat to form a thin layer of wa-
ter. However, this effect does not explain a well known fact that it is also difficult to
stand on skates. Recent studies show the existence of a phenomenon called surface
melting. It causes the surface of ice to be covered with a microscopic liquid layer, of
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the thickness of a few molecules only, which exists at temperatures well below 0 °C.
It is not a separate phase, however, but a surface layer of a different structure than
the crystalline bulk phase.

6.5.3 Liquid–Gas Coexistence

We use the index g for the gas phase. In the process of evaporation, heat is supplied
to the liquid, hence, the enthalpy of evaporation, �h = hg − hl , is positive. Also
�v = vg −vl > 0 and usually the molar volume of the gaseous phase is much larger
than the molar volume of the liquid phase. Only close to the critical point do they
become comparable. Far from the critical point, we have �v ≈ vg . Moreover, we
assume that the molar volume of the vapour can be determined from the equation
of state of the ideal gas: vg = RT/pcoex. Substituting �v into Eq. (6.38), we obtain
the Clausius–Clapeyron equation:

d lnpcoex

dT
= �h

RT 2
. (6.41)

If the dependence of �h on temperature can be neglected then Eq. (6.41) can be
integrated. Assuming that T0 is a reference temperature, we obtain the following
expression:

pcoex(T ) = pcoex(T0) exp

[
�h

RT0

(
1 − T0

T

)]
. (6.42)

6.5.4 Solid–Gas Coexistence

The change in the enthalpy at the solid–gas transition, �h = hg − hs , is called the
enthalpy of sublimation and is positive. Also �v = vg − vs > 0, and the molar
volume of the gas is much larger than the molar volume of the solid. Therefore, we
can use similar reasoning as for the liquid–gas transition and assume that �v ≈ vg

and vg = RT/pcoex. It leads again to Eq. (6.41) in which the enthalpy of melting is
replaced by the enthalpy of sublimation. If the latter does not depend on temperature
then the pressure of sublimation as a function of temperature is given by expression
(6.42).

6.6 Liquid–Vapour Two-Phase Region

So far we have presented phase diagrams in the Tp plane. Then a single phase is rep-
resented by a two-dimensional region, and the two-phase coexistence is represented
by a line. As we know, the equation of state of the form f (p, v,T ) = 0 holds for a
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Fig. 6.10 Isotherms in the liquid and vapour one-phase regions, and in the liquid + vapour
two-phase region are shown (broken lines). The solid line represents the molar volume of the
liquid (left branch) and of the vapour (right branch) at the liquid–vapour coexistence, and vcr and
pcr correspond to the critical point. Above the critical isotherm, T = Tcr, only the super-critical
phase exists. The vertical segments, denoted AB and CD, correspond to the isochors v = v1 < vcr
and v = v2 > vcr, respectively

pure substance, which means that phase diagrams can also be plotted in the vp or vT

planes. As an example, we consider the liquid–vapour coexistence (see Fig. 6.10).
Above the critical temperature Tcr only the super-critical phase exists for any pres-
sure. Below Tcr, a substance can exist as a liquid or as a gas (vapour). The solid line
shows the molar volume of the coexisting phases as a function of pressure; the left
branch, vl(p), corresponds to the liquid and the right branch, vg(p), corresponds
to the vapour. The two branches merge at the critical point, i.e., vl = vg = vcr. For
a given pressure p < pcr, the temperature T of the liquid-vapour coexistence satis-
fies the equation p = pcoex(T ), hence, vl and vg can also be treated as functions of
temperature.

On the diagram, several isotherms are shown. The horizontal segments for
T < Tcr correspond to the saturated vapour pressure, pcoex(T ), and pressures
p < pcoex(T ) correspond to the unsaturated vapour. The isotherms on the liquid
side are very steep. Liquids and solids are not very compressible, and even a small
change in the volume results in a huge change in the pressure. In the two-phase re-
gion, the pressure remains constant when the volume of the system changes. This is
because a change in the volume at constant temperature changes only the proportion
of the coexisting phases until one of them disappears. This proportion follows from
the lever rule (see (6.13)):

nl
(
v − vl

) = ng
(
vg − v

)
, (6.43)

where vl ≤ v ≤ vg . When the temperature approaches Tcr the horizontal segment
of an isotherm shortens, and at Tcr its length reduces to a point. On the horizontal
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segment, (∂p/∂v)T = 0, and at T = Tcr, the derivative (∂p/∂v)T vanishes only
at the critical point, v = vcr, and is negative for v �= vcr. Therefore, the critical
point is an inflection point on the critical isotherm. For T > Tcr, the inequality
(∂p/∂v)T < 0 always holds. We recall that the isothermal compressibility is de-
fined as κT = −v−1(∂v/∂p)T . From the shape of the isotherms, it follows that in
the one-phase regions κT > 0, which means that the condition of mechanical stabil-
ity is satisfied. Obviously, if κT > 0 also κ−1

T > 0. Thus, the condition of mechanical
stability is not satisfied in the two-phase region, where κ−1

T = 0. When the coexis-
tence line is approached from the one-phase region κT remains constant as long
as T < Tcr. However, when the critical point is approached κ−1

T → 0 from above,
which means that κT → +∞.

The divergence of the isothermal compressibility is an important characteristic of
the critical point. Close to the critical point the substance becomes very compress-
ible, and even small variations of pressure cause large changes in the molar volume.
This effect leads to a phenomenon called the critical opalescence. It consists in
strong scattering of light of different wavelength by a substance close to the critical
point. Since the substance becomes very compressible an instantaneous density in
any small fragment of the fluid can be very different from its average value. Close
to the critical point large fluctuations4 of the density exist, which spread out over
distances comparable to the wavelength of light. The presence of such fluctuations
causes scattering of light and the effect of fluid opalescence.

What is going to happen when a closed vessel filled partially with a liquid is
heated at constant volume? We assume that the rest of the vessel is occupied only
by the vapour coexisting with the liquid. Since the vessel is closed, the average
molar volume, v = V/n, does not change. During the heating the molar volume of
the liquid increases and the molar volume of the vapour decreases. Suppose first that
the liquid–vapour interface is in the upper part of the vessel (nl � ng), hence v =
v1 < vcr. Due to the heating the interface moves up (the segment AB in Fig. 6.10).
At the temperature TB , which corresponds to the isotherm crossing the point B ,
the whole vessel is filled with the liquid and further heating proceeds in the liquid
region. Analogously, if the liquid-vapour interface is initially in the lower part of
the vessel (nl � ng), i.e., v = v2 > vcr, then during the heating the interface moves
down (the segment CD in Fig. 6.10). At the temperature TD , which corresponds
to the isotherm crossing the point D, the whole vessel is filled with the vapour and
further heating proceeds in the vapour region.

The situations described above are also presented on the diagram in the Tp

plane (Fig. 6.11). The solid line represents the liquid–vapour coexistence. The ini-
tial points A and C in Fig. 6.10 correspond here to one point because TA = TC . The
isochors v = v1 and v = v2 are shown with a broken line in the one-phase regions.
They branch off from the coexistence line at the points B and D. The critical iso-
chor, v = vcr, is also shown. In this particular case, the heating does not cause large

4Fluctuations are instantaneous and uncontrollable deviations of a given physical quantity from its
average value.
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Fig. 6.11 Isochors:
v = v1 < vcr, v = v2 > vcr
and v = vcr. The points A, B ,
C and D are defined in
Fig. 6.10

changes in the position of the interface which persists to the critical temperature.
Slightly below Tcr the interface begins to smear out, and at Tcr it disappears com-
pletely because the liquid and gaseous phases become indistinguishable. The critical
isochor crosses the critical point and enters directly the region of the super-critical
phase.

At the critical point, both �v and the heat of transition �h disappear, which
means that the liquid–vapour transition becomes continuous at this single point. It
should be stressed, however, that many continuous transitions are not related to any
critical point on a first-order transition line (see Sect. 6.4.1), for instance, the con-
tinuous transitions between the paramagnetic and ferromagnetic phases or between
He I and He II.

6.7 Van der Waals Equation of State

So far our discussion of phase transitions has been of qualitative nature only. In this
section, we present and study an equation of state which provides a simple mathe-
matical model for the liquid–vapour coexistence. It is quite obvious that the ideal gas
equation of state, pv = RT , is not suitable for this purpose because the isotherms
that exhibit only monotonic behaviour cannot describe the two-phase region. There-
fore, van der Waals proposed the following equation of state (see Sect. 2.4.2):

p = RT

v − b
− a

v2
, (6.44)

where the constants a and b are to be determined experimentally for a given sub-
stance. The van der Waals equation of state is of empirical nature but it can also
be derived from a microscopic theory. Note that Eq. (6.44) reduces to the ideal gas
equation of state for a = 0 and b = 0. Since the ideal gas model is based on the
assumption that molecules do not interact with one another, the constants a and b

must be related to intermolecular interactions.
The interaction of two molecules is strongly repulsive at a very short distance

compared with the size of a molecule, and attractive at a longer distance. Due to the
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strong repulsion there exists a minimum volume which a given number of molecules
can occupy. The parameter b characterizes this minimum volume per mole. Thus,
the molar volume v < b does not make any physical sense. The parameter a in
Eq. (6.44) is related to the attractive interaction between molecules at a large dis-
tance. If there are N molecules in the volume V and the molecules interact in pairs
then there are N(N − 1)/2 interactions, which can be approximated by N2/2 when
N is large. Assuming a homogeneous system and taking into account that the inter-
nal energy is an extensive parameter, we calculate the internal energy due to attrac-
tive interactions for a unit volume, and then multiply the result by the volume. In
this way we obtain a quantity proportional to (N/V )2V , which is easy to convert to
the molar volume from the formula N = nNA, where NA is the Avogadro constant
(see Sect. 2.2.2). The reasoning presented above leads to the following approximate
expression for the internal energy of the system (see (2.40)):

U = f

2
nRT − an2

V
, (6.45)

where the parameter a > 0 characterizes, in an average way, the energy of the at-
tractive interactions. The first term comes from the kinetic energy of molecules and
is the same as for the ideal gas.

Note that there is no contribution from the repulsive interactions in expression
(6.45). It can be understood by analogy with the billiard balls. The balls interact
strongly when they collide with one another but their potential energy of deforma-
tion changes quickly into the kinetic energy. Thus, the total energy averaged over
the time is practically equal to their kinetic energy. If the balls interacted also in-
directly, due to electric charges, for instance, then we would have to include their
potential energy as well.

The pressure satisfies the following relation:

p = −
(

∂F

∂V

)

T ,n

= −
(

∂U

∂V

)

T ,n

+ T

(
∂S

∂V

)

T ,n

= − a

v2
+ T

(
∂S

∂V

)

T ,n

. (6.46)

From the comparison with (6.44), it follows that
(

∂S

∂V

)

T ,n

=
(

∂s

∂v

)

T

= R

v − b
, (6.47)

which means that the first term in the van der Waals equation is related to the en-
tropy, hence

s(T , v) = R ln
v − b

v0 − b
+ χ(T ) (6.48)

where v0 is the molar volume of a reference state. To determine the function χ(T )

we use the relation
(

∂u

∂T

)

v

= T

(
∂s

∂T

)

v

= T
dχ

dT
, (6.49)

where (∂u/∂T )v = f R/2, hence, χ(T ) = s0 + (f R/2) ln(T /T0) and

s(T , v) = s0 + 1

2
f R ln

T

T0
+ R ln

v − b

v0 − b
. (6.50)
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Fig. 6.12 Schematic picture
of the isotherms obtained
from the van der Waals
equation of state for several
values of T between T1 < Tcr
and T2 > Tcr. The part of an
isotherm with a positive slope
is unphysical

For b = 0, we recover the ideal gas entropy as a function of T and v. However,
the thermodynamic potential whose natural variables are T and v is the molar
Helmholtz free energy, φ = F/n = u − T s. Using relations (6.45) and (6.50), we
obtain

φ(T , v) =
(

1

2
f R − s0

)
T − a

v
− 1

2
f RT ln

T

T0
− RT ln

v − b

v0 − b
. (6.51)

6.7.1 Maxwell Construction

The first term in Eq. (6.44) gives a higher pressure than the ideal gas equation of state
for the same values of T and v, whereas the presence of attractive interactions lowers
the pressure. For a very dilute gas, the van der Waals equation of state gives similar
results as the equation of state of the ideal gas. When v decreases the second term
becomes important and the predictions of the two equations become very different.

Schematic picture of the isotherms obtained from Eq. (6.44) is shown in
Fig. 6.12. Comparing Figs. 6.10 and 6.12, we notice an important difference for tem-
peratures T < Tcr. The van der Waals isotherms do not have the horizontal segment
corresponding to the two-phase region. Moreover, the part of an isotherm between
the local minimum and local maximum has a positive slope, which corresponds to
negative isothermal compressibility. Since a system with negative compressibility
is not mechanically stable, the liquid–vapour transition must occur at a pressure be-
tween the local minimum and local maximum of the isotherm, which is shown in
Fig. 6.13. To determine the pressure pcoex at the liquid–vapour coexistence from the
van der Waals equation of state, we integrate the Gibbs–Duhem equation (see (6.3)):
dμ = −sdT + vdp, along the isotherm from the point A to B , hence

μB − μA =
∫ B

A

vdp =
∫ B

A

d(pv) −
∫ B

A

pdv =
∫ vB

vA

[
pcoex − p(T , v)

]
dv. (6.52)



146 6 Phase Transitions in Pure Substances

Fig. 6.13 Single van der
Waals isotherm for T < Tcr.
The phase transition occurs at
the pressure pcoex(T ). The
metastable states (fragments
AC and EB) and the
unstable states (fragment
CDE) are drawn with a
broken line. The pressure
pcoex(T ) follows from the
Maxwell construction, i.e.,
the condition of equal area of
the regions I and II

From the condition of two-phase coexistence, μA = μB , we get
∫ vB

vA

[
pcoex − p(T , v)

]
dv = 0, (6.53)

where p(T , v) denotes the van der Waals isotherm for the given temperature T ,
and the molar volumes vA and vB satisfy the equation p(T , v) = pcoex. Therefore,
condition (6.53) can be treated as an equation for pcoex. It is shown in Fig. 6.13 that
the solution of (6.53) corresponds to the condition of equal area of the regions I and
II, and vA = vl(T ) and vB = vg(T ) are the molar volumes of the coexisting liquid
and gaseous phases at the temperature T . The construction shown in Fig. 6.13 is
called the Maxwell construction. It replaces a part of the van der Waals isotherm
(broken line in Fig. 6.13) with a horizontal segment, in such a way that the regions I
and II between the isotherm and the horizontal segment have the same area. In other
words, the Maxwell construction allows to transform the van der Waals isotherm
into another isotherm which describes also the liquid–vapour two-phase region.

The fragments of the van der Waals isotherm with κT > 0, marked as AC and
EB in Fig. 6.13, have a simple physical meaning. They correspond to metastable
states: a super-heated liquid (AC) and a super-saturated vapour (EB). Metastable
states can be observed experimentally if the change of one phase into another phase
proceeds sufficiently slowly and the substance is free of impurities. The fragment
CDE of the isotherm corresponds to unstable states for which κT < 0. In this range
of molar volume, the system separates into two phases irrespective of the speed of
the process and purity of the substance.

6.7.2 Principle of Corresponding States

From the van der Waals equation of state, we can determine the position of the
critical point, that is, we can express Tcr, pcr and vcr in terms of the constants a and b
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which characterize a given substance. To do this, we first rewrite the van der Waals
equation, using the reduced variables: T̄ = T/Tcr, p̄ = p/pcr and v̄ = v/vcr. In
terms of the reduced variables, it adopts the same functional form as Eq. (6.44), i.e.,

p̄ = R̄T̄

v̄ − b̄
− ā

v̄2
, (6.54)

where R̄ = RTcr/(pcrvcr), ā = a/(pcrv
2
cr) and b̄ = b/vcr. Then we express (6.54) in

the form of a third-order equation for the reduced molar volume v̄:

p̄v̄3 − (p̄b̄ + R̄T̄ )v̄2 + āv̄ − āb̄ = 0. (6.55)

From the shape of the isotherms shown in Fig. 6.12, it follows that Eq. (6.55) has one
real root for T̄ > 1, whereas for T̄ < 1 it may have one or three real roots, depending
on the value of the reduced pressure p̄. In particular, for p̄ = pcoex/pcr, Eq. (6.55)
has three real roots corresponding to the points A, B and C in Fig. 6.13. When
T̄ → 1 from below, the roots approach one another, and at the critical temperature,
they merge into one point corresponding to v = vcr, i.e., v̄ = 1. It means that at
T̄ = 1 and p̄ = 1, Eq. (6.55) must have one triple root at v̄ = 1, hence

v̄3 − (b̄ + R̄)v̄2 + āv̄ − āb̄ = (v̄ − 1)3 = 0. (6.56)

Comparing the coefficients at different powers of v̄, we get

ā = 3, b̄ = 1

3
, R̄ = 8

3
, (6.57)

hence, we can express the critical parameters in terms of a and b as follows:

vcr = 3b, pcr = a

27b2
, Tcr = 8a

27Rb
. (6.58)

Then the van der Waals equation of state, expressed in terms of the reduced vari-
ables, adopts the following form:

p̄ = 8T̄

3v̄ − 1
− 3

v̄2
. (6.59)

Note that now it does not contain any quantities characterizing the substance. There-
fore, we can formulate the following conclusion called the principle of correspond-
ing states.

Corollary 6.2 If two different substances have the same values of two reduced vari-
ables then the value of the third reduced variable must also be the same.

We have just shown that this principle holds in the case of substances to which
the van der Waals equation of state can be applied. However, it is more general than
the van der Waals equation. Indeed, any equation of state that can be expressed only
in terms of the reduced variables, i.e.,

f (p̄, T̄ , v̄) = 0, (6.60)
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does not depend on any quantities characterizing the substance, thus, it satisfies the
principle of corresponding states. In reality, this principle is approximately satisfied
only for gases of non-polar molecules, i.e, without electric dipole moments, whose
shape resembles a sphere.

Finally, we note that any equation of state which involves only two constants
characterizing the substance, a and b, can be expressed in a reduced form indepen-
dent of the substance. Obviously the principle of corresponding states must hold for
such equations of state. For instance, the Dieterici equation of state:

p = RT exp(−a/RT v)

v − b
, (6.61)

in terms of the reduced variables, adopts the following form:

p̄ = e2T̄ exp(−2/T̄ v̄)

2v̄ − 1
, (6.62)

where e = exp(1) and vcr = 2b, pcr = a/(2eb)2, Tcr = a/(4bR).

6.8 Exercises

6.1 Using the relations μ = (∂F/∂n)T ,V and p = −(∂F/∂V )T,n, we can express
the chemical potential and pressure as functions of temperature and molar volume.
Show that if P phases coexist in a pure substance then the system is described by
f = 3 − P independent intensive parameters.

6.2 Derive an equation analogous to the Clapeyron equation for the slope of the
two-phase coexistence line in the T μ plane, i.e., the derivative dμcoex/dT , where
μcoex = μcoex(T ) denotes the chemical potential on the coexistence line.

6.3 Calculate the chemical potential μcoex(T ) for the liquid–vapour coexistence,
assuming that the vapour can be approximated by the monatomic ideal gas and the
enthalpy of transition, �h, does not depend on temperature.

6.4 We have n mol of a pure substance which undergoes a phase transition from the
phase α to the phase β at the pressure p and temperature T . To change α into β we
start to supply heat to the system and then the system is thermally insulated. What
is the proportion of the two phases if the molar enthalpy of the transition amounts
to �h, and the heat supplied to the system from the beginning of the transition to
the moment of the system insulation amounts to Q?

6.5 In a thermally insulated system, there are n mol of a pure substance. Initially,
the phase α, of the molar volume vα , is in equilibrium with the phase β , of the
molar volume vβ . Then the heat Q is supplied to the system in a reversible process
at constant temperature and pressure, which causes partial transformation of the
phase α into β . At the end of this process the amount of α in the system is equal
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to nα
f . Determine the average molar volume of the system at the beginning and at

the end of the process. The enthalpy of transition amounts to �h.

6.6 For the transition from ice to liquid water at the temperature T0 = 273.15 K
and pressure of 1 bar, the change in the molar volume and enthalpy of transition
amount to �v = −1.7 cm3 mol−1 and �h = 6.01 kJ mol−1, respectively. Calculate
the pressure at which the transition occurs at −10 °C. Neglect the dependence of
�v and �h on temperature.

6.7 A certain substance undergoes the solid–liquid transition at the pressure of 1 bar
and temperature of 350 K. The molar volume of the solid and liquid phases amounts
to vs = 160 cm3 mol−1 and vl = 163 cm3 mol−1, respectively. The melting point at
a pressure of 100 bar amounts to 351 K. Determine the enthalpy of melting.

6.8 The enthalpy of evaporation of a certain liquid at 180 K and the pressure of
1 bar amounts to 14.4 kJ mol−1. Find the temperature at which the liquid and vapour
coexist at a pressure of 2 bar. Neglect the dependence of the enthalpy of evaporation
on temperature.

6.9 Close to the triple point of ammonia the vapour pressure above the liquid and
solid changes with temperature as

ln(pcoex/1 atm) = 15.16 − 3063 K/T ,

and

ln(pcoex/1 atm) = 18.70 − 3754 K/T ,

respectively. Determine the temperature and pressure at the triple point and the en-
thalpy of evaporation, sublimation and melting.

6.10 The temperature of air on a dry winter morning amounts to −5 °C. The pres-
sure of water vapour is equal to 2 torr. Is frost going to disappear from the car glass?
The pressure at the triple point of water is equal to 0.006 bar, and the enthalpy of
sublimation amounts to 51 kJ mol−1. At what pressure of water vapour can frost
remain?

6.11 A certain liquid boils at the temperature TH = 368 K at the peak of a moun-
tain whose elevation above sea-level amounts to H, and at the foot, it boils at
T0 = 378 K. The enthalpy of evaporation amounts to �h = 45 kJ mol−1. Estimate
the height of the mountain, assuming that the temperature of air is equal to 20 °C.

6.12 Derive a formula for the derivative of the molar entropy difference of two
phases, �s = sβ − sγ , with respect to temperature, along the coexistence line.

6.13 Making use of the result of Exercise 6.12, determine the enthalpy of transition,
�h, as a function of temperature in the range T0 ≤ T ≤ T1, assuming that for both
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phases cp is a linear function of temperature of the form: ci
p = ai(T − T0)+ bi , i =

β,γ , where ai and bi are some constants. Neglect the effect of thermal expansion.

6.14 A vessel of the volume V contains n mol of a pure substance. Initially the
phases α and β coexist in the system at the temperature T0. Then heat is supplied
to the system in a reversible process at constant n and V . In the final state, at the
temperature T1, the phases α and β still coexist and only their proportion is different.
Derive a relation between the heat absorbed by the system and the pressure pcoex(T )

and chemical potential μcoex(T ) of the coexisting phases. Then apply this relation
to the liquid–vapour coexistence. Assume that vapour can be approximated by the
monatomic ideal gas, and the enthalpy of transition does not depend on temperature
(see Exercise 6.3).

6.15 Determine Tcr, pcr and vcr for a gas to which the van der Waals equation of
state applies, assuming a = 0.15 J m3 mol−2 and b = 4 × 10−5 m3 mol−1.

6.16 The internal energy of a gas which satisfies the van der Waals equation of state

p = RT

v − b
− a

v2
(6.63)

is given by

U = f

2
nRT − an2

V
,

where f is the number of degrees of freedom per molecule, and a and b are con-
stants characterizing the gas. Express the molar internal energy at the liquid–vapour
critical point, ucr, in terms of a and b, and then express u = U/n in terms of the
reduced variables: ū = u/ucr, T̄ = T/Tcr and v̄ = v/vcr.

6.17 Express the chemical potential μ of a gas to which the van der Waals equation
of state applies as a function of temperature and pressure. Then find the limit:

μ0(T ) = lim
p→0

[
μ(T ,p) − RT ln

p

p0

]
,

where p0 denotes the pressure of a reference state.



Chapter 7
Mixtures

7.1 Basic Concepts and Relations

7.1.1 Definitions

So far we have been mainly occupied with pure substances. In this chapter, we ex-
tend the formalism of thermodynamics to mixtures, i.e., to systems that contain more
than one component. By a component we mean a substance of a definite chemical
composition, i.e., a chemical compound. Here we consider only such processes in
which all components maintain their identity, which means that no chemical reac-
tions occur in a system. Application of thermodynamics to chemical reactions is
discussed in Part III of this book.

Imagine a vessel isolated from the surroundings and consisting of two parts sep-
arated by a diathermal wall. The parts are occupied by two different gases. For
simplicity, we assume that both gases are very dilute so they can be considered ideal
gases. Each gas is in thermodynamic equilibrium. We also assume that the temper-
ature and pressure in both parts are the same. Then we remove the dividing wall.
What will happen? Although the temperature and pressure will not change, accord-
ing to the second law of thermodynamics, the system will reach a new equilibrium
state of higher entropy. Why does the entropy of the system increase? We know
from experience that the gases will not stay in their parts of the vessel but will mix.
Due to the process of mixing each component fills the whole volume of the vessel.
The process is irreversible, hence, the entropy of the system must increase. The new
equilibrium state corresponds to a homogeneous gas in which both components are
mixed up on a molecular scale.

And what will happen if we use liquids instead of gases? We know from ex-
periment that some liquids mix in arbitrary proportion, as gases do, although the
process of mixing is slower than in gases. Other liquids mix only in certain pro-
portion. Besides, mixing of liquids involves some effects that are absent in gases.
For instance, when two liquids mix at constant temperature and pressure their to-
tal volume before and after the mixing is different, in general. A good example is
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the mixture of liquid water and ethanol. The molar volume of water amounts to
18 cm3 mol−1. If we mix one mole of water with a much larger amount of ethanol,
of the volume V , then the volume of the mixture amounts to about V + 14 cm3, in-
stead of V + 18 cm3. This is because in strong dilution almost each water molecule
is surrounded by ethanol molecules. Due to different structure of both molecules the
effective volume occupied by one water molecule surrounded by ethanol is smaller
than in pure water.

If components are mixed up on a molecular scale the mixture is a homogeneous
system, which means that it forms a phase. Mixtures, as pure substances, can un-
dergo phase transitions. The number of possible phases usually increases with the
number of components. For instance, in a mixture of two components, two liquid
phases of different composition may exist. It occurs when two liquids do not mix in
all proportion. Then, in a certain range of composition, the mixture cannot exist as a
homogeneous liquid but it separates into two liquid phases of different concentration
of each component.

Many phenomena that occur in liquid or solid mixtures can be explained by
means of a certain idealization of a real system, called the ideal mixture or ideal
solution. In the ideal mixture, as in the mixture of ideal gases, the only effect of mix-
ing is an increase in the entropy of the system caused by an increase in the volume
available to each component. When can we apply the ideal mixture approximation
to real mixtures? Usually we can do so if the molecules of different components are
similar in respect of size and intermolecular interactions. By a similarity of interac-
tions we understand that the interaction of two molecules does not depend much on
whether they are molecules of the same component or different components. Then,
each molecule is always in a similar environment irrespective of whether it is a pure
substance or a mixture of similar components.

The composition of a mixture can be defined in different ways. In this book,
we use mainly the molar fraction. In the case of solutions, the molar concentration
(molarity) or molality are often used.

Definition 7.1 Molar fraction is the ratio of the mole number of a component to the
total mole number of all components. The sum of all molar fractions is equal to 1.

Definition 7.2 Solution is a mixture in a liquid or solid phase, composed of two or
more substances, one of which—called the solvent—is treated differently from the
other components—called the solutes. If the sum of molar fractions of all solutes is
much smaller than unity we talk about a dilute solution.

Definition 7.3 Molar concentration is the amount of a component measured in
moles divided by the volume of the mixture.

A commonly used unit of the molar concentration is mol per litre (mol L−1).
A solution of the molar concentration of 1 mol L−1 is called the 1-mol solution and
is denoted by 1 M.
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Definition 7.4 Molality is the amount of a solute measured in moles divided by the
mass of the solvent.

A commonly used unit of the molality is mol per kilogram (mol kg−1).

7.1.2 Internal Energy

We recall that in one-component systems, the internal energy U is a function of
three extensive parameters: the entropy S, volume V and mole number n. The rela-
tion between these extensive parameters: U = U(S,V,n), is called the fundamental
relation. It contains complete information about a given system in thermodynamic
equilibrium (see Sect. 4.3.1).

Extension of the fundamental relation to mixtures is simple. Instead of one mole
number n we have the mole numbers: n1, . . . , nC , of the C components, hence

U = U(S,V,n1, . . . , nC), (7.1)

dU = T dS − pdV +
C∑

i=1

μidni, (7.2)

U = T S − pV +
C∑

i=1

μini, (7.3)

where μi denotes the chemical potential of the ith component. Equation (7.1) is the
fundamental relation for a mixture. The physical meaning of all terms in (7.2) is
the same as in the case of a pure substance. From the form of dU , the following
relations follow:

(
∂U

∂S

)

V,ni

= T ,

(
∂U

∂V

)

S,ni

= −p,

(
∂U

∂ni

)

S,V,nj �=i

= μi, (7.4)

where the differentiation at constant ni means that all mole numbers are fixed, and
the differentiation at constant nj �=i means that all nj except j = i are fixed. Identity
(7.3) is the Euler relation (cf. (4.60)), which results from the extensiveness of all
parameters in (7.1). Mathematically this fact is expressed by the identity:

U(mS,mV,mn1, . . . ,mnC) = mU(S,V,n1, . . . , nC), (7.5)

where m > 0. Differentiating both sides of (7.5) with respect to m and then putting
m = 1, we obtain

U =
[

d

dm
U(mS,mV,mn1, . . . ,mnC)

]

m=1
= T S − pV +

C∑

i=1

μini, (7.6)

where we have used relations (7.4). Thus, we have derived the Euler relation for
mixtures.
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7.1.3 Thermodynamic Potentials

The thermodynamic potentials for mixtures are defined in the same way as for pure
substances. Here we restrict ourselves to the three most often used potentials, i.e.,
the Helmholtz free energy, enthalpy, and Gibbs free energy. All of them are pre-
sented below as functions of their natural variables.

Helmholtz free energy: F = F(T ,V,n1, . . . , nC)

The Legendre transform of U(S,V,n1, . . . , nC) with respect to S;

F = U − T S, dF = −SdT − pdV +
C∑

i=1

μidni, (7.7)

(
∂F

∂T

)

V,ni

= −S,

(
∂F

∂V

)

T ,ni

= −p,

(
∂F

∂ni

)

T ,V,nj �=i

= μi. (7.8)

Enthalpy: H = H(S,p,n1, . . . , nC)

The Legendre transform of U(S,V,n1, . . . , nC) with respect to V ;

H = U + pV, dH = T dS + V dp +
C∑

i=1

μidni, (7.9)

(
∂H

∂S

)

p,ni

= T ,

(
∂H

∂p

)

S,ni

= V,

(
∂H

∂ni

)

S,p,nj �=i

= μi. (7.10)

Gibbs free energy: G = G(T ,p,n1, . . . , nC)

The Legendre transform of U(S,V,n1, . . . , nC) with respect to S and V ;

G = U − T S + pV, dG = −SdT + V dp +
C∑

i=1

μidni,

(7.11)(
∂G

∂T

)

p,ni

= −S,

(
∂G

∂p

)

T ,ni

= V,

(
∂G

∂ni

)

T ,p,nj �=i

= μi. (7.12)

The Gibbs free energy is of great importance to chemical thermodynamics because
an equilibrium state at constant temperature and pressure corresponds to a mini-
mum of G (see Corollary 5.3 and 5.4). Equations (7.11) are called the fundamental
equations of chemical thermodynamics.

In the case of pure substances, the molar Gibbs free energy, g = G/n, is equal to
the chemical potential. In the case of mixtures, n = ∑C

i=1 ni is the total number of
moles of all components in a mixture, and xi = ni/n is the molar fraction of the ith
component. The molar fractions satisfies the identity

C∑

i=1

xi = 1. (7.13)
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From the extensiveness of G, it follows that

g = 1

n
G(T ,p,n1, . . . , nC) = G(T ,p,x1, . . . , xC), (7.14)

thus, the molar Gibbs free energy is a function of T , p and C − 1 independent
molar fractions, e.g., g = g(T ,p, x1, . . . , xC−1). Dividing dG in (7.11) by n and
substituting dxC = −∑C−1

i=1 dxi , we get

dg = −sdT + vdp +
C−1∑

i=1

(μi − μC)dxi, (7.15)

hence for i < C, we have
(

∂g

∂xi

)

T ,p,xj �=i

= μi − μC. (7.16)

It follows from the definition of G and from the Euler relation that

G =
C∑

i=1

niμi, (7.17)

hence

g =
C∑

i=1

xiμi. (7.18)

Gibbs–Duhem Equation The differential of G obtained from relation (7.17), i.e.,

dG =
C∑

i=1

(μidni + nidμi), (7.19)

is equal to dG in (7.11), provided that the Gibbs–Duhem equation:

SdT − V dp +
C∑

i=1

nidμi = 0, (7.20)

holds. Dividing both sides by n, we get

sdT − vdp +
C∑

i=1

xidμi = 0, (7.21)

where s = S/n and v = V/n. In the case of one component, we recover relation
(5.30). The Gibbs–Duhem equation is a relation between C + 2 intensive parame-
ters, thus, C + 1 of them can be varied independently. For instance, the pressure can
be treated as a function of temperature and chemical potentials of all components,
i.e.,

dp = − s

v
dT +

C∑

i=1

�idμi, (7.22)
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where s/v is the entropy of the system per unit volume, and �i = ni/V denotes the
molar concentration of the ith component. Another possible choice of independent
variables is T , p and the chemical potentials of C − 1 components. If we study
processes at constant temperature and pressure then the Gibbs–Duhem equation re-
duces to a relation between chemical potentials:

C∑

i=1

xidμi = 0, at T = const and p = const. (7.23)

7.2 Intrinsic Stability of a Mixture

In Sect. 5.5, we derived the conditions of intrinsic stability for one-component sys-
tems, i.e., cv > 0 and κT > 0, using the entropy maximum principle. For mixtures,
these two conditions have the same form because

cv = T

(
∂S

∂T

)

V,ni

, κT = − 1

V

(
∂V

∂p

)

T ,ni

, (7.24)

are calculated at constant mole numbers of all components. Moreover, we showed
that the condition κT > 0 can also be derived from the minimum principle for the
Helmholtz free energy, for systems at constant temperature.

In the case of mixtures, there are additional conditions of intrinsic stability related
to the possibility of flow of different components between subsystems. To derive
these new conditions, we apply the minimum principle for the Gibbs free energy
(see Sect. 5.3.2) to a closed system at constant temperature and pressure. Using the
same reasoning as in Sect. 5.5, we separate a small subsystem from a given system.
Then the Gibbs free energy of the whole system adopts the following form:

Gtot = ng + n′g′ = ng(T ,p, x1, . . . , xC−1) + n′g
(
T ,p,x′

1, . . . , x
′
C−1

)
, (7.25)

where n and g correspond to the small subsystem, and n′, g′ correspond to the
complementary subsystem. The molar Gibbs free energy of both subsystems has the
same functional form because they are parts of the same system. We also assume
that n � n′. The whole system is closed, hence

ndxi + n′dx′
i = d

(
ni + n′

i

) = 0, (7.26)

for i = 1, . . . ,C − 1. The equilibrium state of the system corresponds to the mini-
mum of Gtot. From the necessary condition for a minimum of Gtot and conditions
(7.26), we obtain

dGtot = ndg + n′dg′ = n

C−1∑

i=1

[(
∂g

∂xi

)

T ,p,xj �=i

−
(

∂g

∂x′
i

)

T ,p,x′
j �=i

]
dxi = 0, (7.27)

hence

μi − μC = μ′
i − μ′

C, (7.28)
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where we have used (7.16). Equation (7.28) resembles the condition of equilibrium
with respect to matter flow but here we have difference between the chemical po-
tentials: μi − μC = μ̃i and μ′

i − μ′
C = μ̃′

i . We note, however, that using (7.13), we
can transform the Gibbs–Duhem equation (see (7.21)) as follows:

dμC = −sdT + vdp −
C−1∑

i=1

xidμ̃i , (7.29)

hence, we conclude that μC = μC(T ,p, μ̃1, . . . , μ̃C−1). Thus, from the equality
μ̃i = μ̃′

i , for i = 1, . . . ,C − 1, it follows that μC = μ′
C , which means that μi = μ′

i ,
for i = 1, . . . ,C, in accord with the condition of equilibrium with respect to matter
flow.

Then we use the sufficient condition for the minimum of Gtot:

d2Gtot = nd2g + n′d2g′ > 0, (7.30)

where

d2g = 1

2

C−1∑

i=1

C−1∑

j=1

gij dxidxj , (7.31)

gij =
(

∂2g

∂xi∂xj

)

T ,p

(7.32)

and an analogous expression can be written for d2g′. Repeating the reasoning pre-
sented in Sect. 5.5, one shows that the term n′d2g′ in (7.30) can be neglected if
n � n′, thus, it suffices to study the condition d2g > 0. To proceed with it, it is con-
venient to present d2g as a sum of quadratic terms. We show below how to do it in
a systematic way.

In the first step, we express d2g in the following form:

d2g = 1

2
g11(dx1)

2 +
C−1∑

j=2

g1j dx1dxj + 1

2

C−1∑

i=2

C−1∑

j=2

gij dxidxj . (7.33)

We recall (see (7.15)) that

dg =
C−1∑

i=1

(μi − μC)dxi =
C−1∑

i=1

μ̃idxi, (7.34)

for constant T and p, hence μ̃i is a function of C − 1 molar fractions. Substituting
dx1 obtained from the condition

dμ̃1 = g11dx1 +
C−1∑

i=2

g1idxi, (7.35)

into (7.33), we get

d2g = (dμ̃1)
2

2g11
+ 1

2

C−1∑

i=2

C−1∑

j=2

(
gij − g1ig1j

g11

)
dxidxj . (7.36)
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From (7.35), it follows that
(

∂x1

∂xj

)

T ,p,μ̃1

= −g1j

g11
, (7.37)

hence, making use of the relation ∂g/∂xi = μ̃i , we obtain

gij − g1ig1j

g11
= gij + g1i

(
∂x1

∂xj

)

T ,p,μ̃1

=
(

∂μ̃i

∂xj

)

T ,p,μ̃1

. (7.38)

To simplify notation, we have suppressed all the variables xk �=j . Now (7.36) can be
presented as follows:

d2g = (dμ̃1)
2

2g11
+ 1

2

C−1∑

i=2

C−1∑

j=2

(
∂μ̃i

∂xj

)

T ,p,μ̃1

dxidxj . (7.39)

Then we introduce the partial Legendre transform of the function g with respect to
x1, i.e.

g[μ̃1] = g − μ̃1x1. (7.40)

Thus, we get
(

∂μ̃i

∂xj

)

T ,p,μ̃1

=
(

∂2g[μ̃1]
∂xi∂xj

)

T ,p,μ̃1

, (7.41)

which follows from the observation that at constant T and p we have

dg[μ̃1] = −x1dμ̃1 +
C−1∑

i=2

μ̃idxi, (7.42)

where

μ̃i =
(

∂g[μ̃1]
∂xi

)

T ,p,μ̃1

. (7.43)

If also μ̃1 is constant then

dg[μ̃1] =
C−1∑

i=2

μ̃idxi (7.44)

has the same form as in (7.34) but the number of variables has been reduced by one.
Here, however, μ̃i = μ̃i(μ̃1, x2, . . . , xC−1) for i = 2, . . . ,C − 1. Finally, d2g can be
expressed in the following form:

d2g = (dμ̃1)
2

2g11
+ 1

2

C−1∑

i=2

C−1∑

j=2

g[μ̃1]ij dxidxj , (7.45)

where g[μ̃1]ij = (∂2g[μ̃1]/∂xi∂xj )T ,p,μ̃1 .
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We proceed in the same way as described above with the second term on the
right-hand side of (7.45). Having performed C − 1 steps, we obtain

d2g = (dμ̃1)
2

2g11
+ 1

2

C−1∑

k=2

(dμ̃k)
2

g[μ̃1, . . . , μ̃k−1]kk

, (7.46)

where

g[μ̃1, . . . , μ̃k−1] = g −
k−1∑

j=1

μ̃j xj , (7.47)

is the partial Legendre transform of g with respect to x1, . . . , xk−1, and

g[μ̃1, . . . , μ̃k−1]kk =
(

∂2g[μ̃1, . . . , μ̃k−1]
∂x2

k

)

T ,p,μ̃1,...,μ̃k−1

. (7.48)

The differentials dg and dμ̃k at constant T , p and μ̃1, . . . , μ̃k−1 amount to

dg[μ̃1, . . . , μ̃k−1] =
C−1∑

j=k

μ̃j dxj (7.49)

and

dμ̃k = g[μ̃1, . . . , μ̃k−1]kkdxk +
C−1∑

j=k+1

g[μ̃1, . . . , μ̃k−1]kj dxj , (7.50)

respectively, where

μ̃j =
(

∂g[μ̃1, . . . , μ̃k−1]
∂xj

)

T ,p,μ̃1,...,μ̃k−1

, (7.51)

for j = k, . . . ,C − 1. In particular, for k = C − 1 we have

dg[μ̃1, . . . , μ̃C−2] = μ̃C−1dxC−1, (7.52)

dμ̃C−1 = g[μ̃1, . . . , μ̃C−2]C−1,C−1dxC−1. (7.53)

Thus, the condition d2g > 0 is satisfied if all coefficients at (dμ̃k)
2 are positive, i.e.,

(
∂2g[μ̃1, . . . , μ̃k−1]

∂x2
k

)

T ,p,μ̃1,...,μ̃k−1

=
(

∂μ̃k

∂xk

)

T ,p,μ̃1,...,μ̃k−1

> 0, (7.54)

for k = 1, . . . ,C − 1, and for k = 1, we have g[μ̃1, . . . , μ̃k−1] = g.

Example 7.1 For C = 2, we have only one independent molar fraction, e.g., x1.
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Then

d2g = 1

2
g11(dx1)

2 = (dμ̃1)
2

2g11
, (7.55)

where we have used the relation: dμ̃1 = g11dx1. Thus, the condition of intrinsic
stability has the following form:

(
∂2g

∂x2
1

)

T ,p

=
(

∂μ̃1

∂x1

)

T ,p

> 0. (7.56)

From the condition x2 = 1 − x1 and relations (7.29) and (7.56), we conclude that
(

∂μ2

∂x2

)

T ,p

= −
(

∂μ2

∂x1

)

T ,p

= x1

(
∂μ̃1

∂x1

)

T ,p

> 0. (7.57)

The same inequality holds for the first component, since from Eq. (7.23), we get

x1

(
∂μ1

∂x1

)

T ,p

= x2

(
∂μ2

∂x2

)

T ,p

> 0. (7.58)

This means that for intrinsically stable two-component systems, the chemical
potential of a given component is an increasing function of its molar fraction at
constant T and p.

7.3 Partial Molar Quantities and Functions of Mixing

7.3.1 Partial Molar Quantities

First, we give a formal definition of a partial molar quantity and then present a few
examples of such quantities.

We consider an extensive quantity Y which is a state function of the state param-
eters: T , p and n1, . . . , nC , e.g., the entropy or Gibbs free energy.

Definition 7.5 Partial molar quantity is a change in a given extensive quantity due
to addition of a small amount of one component at constant temperature, pressure
and amounts of all other components, divided by the amount added.

Although it sounds complicated the formula is very simple. For the extensive
function of state Y(T ,p,n1, . . . , nC), the partial molar quantity related to the ith
component is defined by the following formula:

yi =
(

∂Y

∂ni

)

T ,p,nj �=i

. (7.59)

By definition partial molar quantities are intensive parameters.
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For the function Y , we can derive an equation analogous to the Euler relation,
using the identity

Y(T ,p,mn1, . . . ,mnC) = mY(T ,p,n1, . . . , nC), (7.60)

where m is an arbitrary positive number. This identity expresses extensiveness of Y

in the language of mathematics. Differentiating both sides of (7.60) with respect to
m and putting m = 1 at the end, we arrive at the following equation:

C∑

i=1

ni

(
∂Y

∂ni

)

T ,p,nj �=i

= Y, (7.61)

and because of (7.59) we have

Y =
C∑

i=1

niyi . (7.62)

Relation (7.62) simply means that yi is a partial contribution to the quantity Y per
one mole of the ith component, which justifies its name.

Example 7.2 First, we substitute the Gibbs free energy for Y . From (7.12), we con-
clude that the partial molar quantities associated with G are:

(
∂G

∂ni

)

T ,p,nj �=i

= μi, (7.63)

i.e., the chemical potentials of individual components, and (7.62) takes on the form
of relation (7.17):

G =
C∑

i=1

niμi. (7.64)

Example 7.3 We substitute for Y the total volume V occupied by the mixture.
Since V is the derivative of G with respect to p (see (7.11)) we have V =
V (T ,p,n1, . . . , nC), and

vi =
(

∂V

∂ni

)

T ,p,nj �=i

(7.65)

is the partial molar volume of the ith component. It is understood as the effective
volume occupied by molecules of the ith component in the mixture. It depends on
the temperature and pressure and also on the mixture composition. Relation (7.62)
takes on the following form:

V =
C∑

i=1

nivi . (7.66)
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7.3.2 Relations Between Partial Molar Quantities

There exist useful relations between some partial molar quantities. For instance,
from (7.11) and (7.65), we obtain a relation between vi and μi :

vi =
(

∂μi

∂p

)

T ,nj

, (7.67)

were we have used the equality of the partial second derivatives of G with respect to
p and ni . In an analogous way, a relation between μi and the partial molar entropy
si is derived, where

si =
(

∂S

∂ni

)

T ,p,nj �=i

. (7.68)

From the equality of the second derivatives of G with respect to T and ni , we get

si = −
(

∂μi

∂T

)

p,nj

. (7.69)

Example 7.4 Since the chemical potential is an intensive parameter we can divide
n1, . . . , nC by the total mole number n and treat μi as a function of T , p and
C − 1 independent molar fractions, e.g., x1, . . . , xC−1. Then, making use of rela-
tions (7.67) and (7.69), we obtain

dμi = −sidT + vidp +
C−1∑

j=1

(
∂μi

∂xj

)

T ,p,xk �=j

dxj . (7.70)

For C = 1, relation (7.70) reduces to the Gibbs–Duhem equation for a pure sub-
stance.

A relation between partial molar quantities, analogous to the Gibbs–Duhem
equation at constant temperature and pressure, cane be derived. It follows from def-
inition (7.59) that the differential of Y at constant T and p is given by the formula

dY =
C∑

i=1

yidni. (7.71)

The same differential can also be calculated from relation (7.62), hence

dY =
C∑

i=1

(yidni + nidyi). (7.72)

From the comparison of (7.71) and (7.72), we obtain the relation:

C∑

i=1

nidyi = 0, (7.73)

which means that amongst C intensive quantities yi there are C − 1 independent
ones.
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Example 7.5 Substituting for yi the chemical potentials in relation (7.73), we get

C∑

i=1

nidμi = 0, (7.74)

which is the Gibbs–Duhem equation at constant T and p (cf. Eq. (7.20)).

Example 7.6 The substitution of vi for yi in (7.73) leads to the relation

C∑

i=1

nidvi = 0, (7.75)

which shows that the partial molar volumes are not independent of one another.

7.3.3 Functions of Mixing

Definition 7.6 Function of mixing is a change in a given extensive state function of
a mixture due to the transition of the components from the pure state to the mixture,
at constant temperature and pressure.

It is to be understood as follows. In the initial state, the system consists of C

subsystems, where C denotes the number of components, and each subsystem con-
tains a different component. Between the subsystems, there are walls that prevent
the components from mixing but allow to reach the thermal and mechanical equi-
librium. Thus, the temperature and pressure have the same values in all subsystems
equal to the temperature and pressure of the surroundings. We denote the value of
the function Y in the initial state by Y ∗. Since Y is an extensive quantity we have

Y ∗(T ,p,n1, . . . , nC) =
C∑

i=1

niy
∗
i (T ,p), (7.76)

where y∗
i is the molar quantity Y for the pure substance i. For instance, if Y = V

then v∗
i is the molar volume of the pure substance i. When all internal constraints

are removed the components start to mix and the system reaches a new equilibrium
state for which Y = Y(T ,p,n1, . . . , nC). The function of mixing for the quantity Y

is denoted by �MY and according to Definition 7.6 it is equal to �MY = Y − Y ∗.
Making use of relations (7.62) and (7.76), we can express �MY in the following
form:

�MY =
C∑

i=1

ni

(
yi − y∗

i

)
, (7.77)

and since yi �= y∗
i , in general, also �MY �= 0.
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The Gibbs free energy of mixing is of fundamental importance. It is defined by

�MG =
C∑

i=1

ni

(
μi − μ∗

i

)
, (7.78)

where μ∗
i is the chemical potential of the i-component in the pure state, i.e., for the

pure substance. Differentiating �MG with respect to p at constant temperature and
composition, we arrive at the volume of mixing, �MV :

(
∂�MG

∂p

)

T ,nj

=
C∑

i=1

ni

(
vi − v∗

i

) = �MV, (7.79)

where we have used relation (7.67), which applies both to mixtures and to pure
substances. In a similar way, using (7.69), we derive the following relation:

(
∂�MG

∂T

)

p,nj

= −
C∑

i=1

ni

(
si − s∗

i

) = −�MS, (7.80)

where �MS denotes the entropy of mixing. Then we use the relation H = G + T S,
to define the enthalpy of mixing, �MH :

�MH = �MG + T �MS. (7.81)

Finally, the internal energy of mixing, �MU , is determined from the relation U =
H − pV :

�MU = �MH − p�MV. (7.82)

We can see that the knowledge of �MG is a crucial question, as we can derive from
�MG other functions of mixing. We will show that it has a particularly simple form
for a mixture of ideal gases.

7.4 Mixture of Ideal Gases

With the concept of the ideal gas, we associate the lack of interactions between
molecules, except collisions, which are necessary to reach thermodynamic equilib-
rium. However, we neglect the size of molecules, treating them as point objects, and
also the attractive interactions. Therefore, the internal energy of the ideal gas is the
sum of energy of individual molecules.

7.4.1 Dalton’s Law

From the assumption that molecules in the ideal gas do not interact, we conclude that
a mixture of ideal gases must also be an ideal gas, and each gaseous component can
be treated as if it filled separately the whole vessel. Thus, the total force exerted by
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all molecules on the walls of the vessel must be equal to the sum of the forces exerted
by molecules of individual components. This means that the individual components
and the mixture satisfy the equation of state of the ideal gas, i.e.,

piV = niRT , (7.83)

pV = nRT, (7.84)

where i = 1, . . . ,C, n = ∑C
i=1 ni , and pi and p denote the pressure of the ith com-

ponent and the total pressure of the mixture, respectively. From Eqs. (7.83) and
(7.84), it follows that

C∑

i=1

pi = p, (7.85)

where pi = xip. Relation (7.85) is called Dalton’s law.

Corollary 7.1 The total pressure exerted by a mixture of gases on the vessel walls
is the sum of the pressures exerted separately by each gas.

The pressure pi = xip is called the partial pressure of the ith component. It has
sense for any mixture because the total pressure p and the molar fractions are well
defined quantities. The sum of all partial pressures is equal to the total pressure since

C∑

i=1

pi = p

C∑

i=1

xi = p. (7.86)

However, if gases are not ideal the partial pressure pi differs, in general, from the
pressure of the ith gas filling separately the whole vessel, thus, Dalton’s law is not
satisfied in that case.

7.4.2 Chemical Potential of a Component

In Sect. 5.2.2, we derived the expression for the chemical potential of the ideal gas
(see (5.52)). Here we are mainly interested in the dependence of μ on pressure,
therefore, it is convenient to express it in the following form:

μ(T ,p) = μ0(T ) + RT ln
p

p0
, (7.87)

where p0 denotes the pressure of a reference state, and μ0(T ) is the chemical poten-
tial for p = p0. In principle, the reference state can be arbitrarily chosen, however,
the following convention is used in practice.

Definition 7.7 Standard pressure denoted by p0 is the pressure of 105 Pa = 1 bar.1

1Before 1982 the value 101 325 Pa (= 1 atm) was used.
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Definition 7.8 Standard state is the state of a system chosen as standard for refer-
ence by convention.

Definition 7.9 Standard state of a gas is the hypothetical state of the pure substance
in the gaseous phase at the standard pressure p0, assuming the ideal gas behaviour.

Thus, μ0(T ) in (7.87) is the chemical potential of the ideal gas in the standard
state. We note, however, that Definition 7.9 of the standard state applies not only to
ideal gases, and the meaning of hypothetical state is explained in the section devoted
to real gases.

Now, we can apply expression (7.87) to the ith component at the partial pressure
pi , which gives

μi = μ0
i (T ) + RT ln

pi

p0
. (7.88)

Substituting pi = xip, we arrive at the expression for the chemical potential of the
ith component in a mixture of ideal gases at the temperature T and total pressure p:

μi = μ∗
i (T ,p) + RT lnxi, (7.89)

where

μ∗
i (T ,p) = μ0

i (T ) + RT ln
p

p0
(7.90)

is the chemical potential of the ith gas in the pure state, at the temperature T and
pressure p.

7.4.3 Functions of Mixing for Ideal Gases

Substituting (7.89) into expression (7.78), we get

�MG = RT

C∑

i=1

ni lnxi = nRT

C∑

i=1

xi lnxi, (7.91)

hence, the entropy of mixing amounts to (see (7.80))

�MS = −nR

C∑

i=1

xi lnxi. (7.92)

Since the molar fractions satisfy the inequality xi < 1, we have �MG < 0 and
�MS > 0. Therefore, the process of mixing is irreversible because the Gibbs free
energy decreases at constant temperature and pressure. Then we find that the volume
of mixing

�MV = 0, (7.93)
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since �MG does not depend on pressure. From relations (7.81), (7.91) and (7.92),
we obtain the enthalpy of mixing

�MH = 0 (7.94)

and the internal energy of mixing

�MU = �MH − p�MV = 0. (7.95)

We can summarize these results as follows.

Corollary 7.2 Mixing of ideal gases does not cause any thermal effect or change in
the volume. The only effect of mixing is an increase in the entropy of the system.

7.5 Ideal Mixture

If we mix different liquids whose molecules are so similar that the differences in
the intermolecular interactions can be neglected then we do not observe, as in the
case of ideal gases, any thermal effect in the system or change in its volume. The
reason of such behaviour is that for similar molecules it does not really matter if
a given molecule interacts with molecules of the same or a different component.
Nevertheless, molecules of different components are distinguishable, and the en-
tropy of the system increases in the process of mixing. As in the case of ideal gases,
this is caused by an increase in the volume available to molecules of each compo-
nent. Therefore, our consideration that was restricted originally to mixtures of ideal
gases can now be extended to the case of interacting molecules, provided that these
interactions do not differ much for different components.

Definition 7.10 Ideal mixture is a mixture of the components A, B , . . . such that
the chemical potential of each component i is given by the formula

μi = μ∗
i (T ,p) + RT lnxi, (7.96)

where μ∗
i is the chemical potential of the ith component in the pure state.

The ideal mixture in the liquid or solid phase is also called the ideal solution.
Expression (7.96) has the same form as (7.89). It should be remembered, however,
that the chemical potential μ∗

i for a liquid or solid is not given by expression (7.90),
which applies to the ideal gas only. From relation (7.96), it follows that �MV = 0
and �MH = 0, and the entropy of mixing is given by formula (7.92), i.e.,

�MS = −nR

C∑

i=1

xi lnxi.

Corollary 7.3 In the ideal mixture, the properties of a component are not affected
by the presence of other components, and the only effect of mixing is the dissolution
of each component in the others.
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7.6 Real Mixtures

A non-ideal mixture is called a real mixture. The expression for the chemical po-
tential of a component in a real mixture has to be modified. However, we want to
do it in such a way that it should resemble expressions (7.96) or (7.88) as much as
possible.

7.6.1 Fugacity

Fugacity of a Pure Gas First, we consider a pure substance in the gaseous phase.
As we know, the chemical potential of the ideal gas, here denoted μid, is given by
the formula

μid(T ,p) = μ0(T ) + RT ln
p

p0
. (7.97)

To express the chemical potential of a real gas, we use an analogous formula, re-
placing only the pressure with a certain function of T and p.

Definition 7.11 Fugacity f is an intensive quantity of the dimension of pressure,
defined by the relation

μ(T ,p) = μ0(T ) + RT ln
f (T ,p)

p0
, (7.98)

where μ denotes the chemical potential of the gas. The fugacity of the ideal gas is
equal to its pressure.

The advantage of expressing the chemical potential in terms of the fugacity may
seem illusive, since we simply express one unknown quantity with another one. We
know, however, that in the case of dilute gases f ≈ p, as then the ideal gas is a good
approximation, therefore

lim
p→0

f (T ,p)

p
= 1. (7.99)

Thus, f = f id = p for the ideal gas, and in the case of real gases, the fugacity can be
interpreted as a corrected pressure. Besides, various relations derived for mixtures
of ideal gases remain valid also for real gases if the partial pressure of a component
is replaced by its fugacity.

The fugacity can be related to the difference between the molar volume of a real
gas and the ideal gas, at the same temperature and pressure. From (7.98), it follows
that for T = const,

RT d lnf =
(

∂μ

∂p

)

T

dp = vdp, (7.100)
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and for the ideal gas,

RT d lnp = RT

p
dp = viddp. (7.101)

Subtracting (7.101) from (7.100) and integrating over pressure, we get

ln
f (T ,p)

p
= 1

RT

∫ p

0

[
v
(
T ,p′) − vid(T ,p′)]dp′, (7.102)

which satisfies condition (7.99).
We return once more to the definition of the standard state (see Definition 7.9).

It follows from Eqs. (7.97) and (7.98) that the standard chemical potential μ0(T )

is equal to μid(T ,p0), and not to μ(T ,p0), since f (T ,p0) �= p0 for real gases, in
general. The chemical potential μid represents here the ideal gas to which a given
real gas tends in the limit p → 0. This means that the standard state is not a state
of the real gas but a hypothetical state of the ideal gas at the pressure p0. We shall
see that an analogous procedure is used to define the standard state of a solute in a
dilute solution.

Fugacity of a Gaseous Component in a Mixture The fugacity of a gaseous com-
ponent in a mixture of real gases is defined in a similar way as for a pure substance.
The starting point is expression (7.88) for the chemical potential of a component in
the mixture of ideal gases, denoted here μid

i , i.e.,

μid
i = μ0

i (T ) + RT ln
pi

p0
, (7.103)

where pi = xip denotes the partial pressure. In the case of real gases, the partial
pressure of the ith component is replaced by its fugacity, fi , i.e.,

μi = μ0
i (T ) + RT ln

fi

p0
, (7.104)

where fi is a function of temperature, pressure and composition of the mixture. Tak-
ing the differential of both sides of (7.104) at constant temperature and at constant
mole numbers n1, . . . , nC , we get

RT d lnfi = vidp, (7.105)

where vi is the partial molar volume at the pressure p. The molar volume of the
ideal gas at the pressure p is equal to vid = RT/p, hence

RT d ln
fi

p
= (

vi − vid)dp. (7.106)

Integrating the last relation from zero to p, we obtain

ln
fi

p
= 1

RT

∫ p

0

(
vi − vid)dp′ + ci, (7.107)

where ci is an integration constant. It must be chosen in such a way that fi tends to
pi in the limit p → 0. This requirement is satisfied if ci = lnxi , since then

ln
fi

xip
= 1

RT

∫ p

0

(
vi − vid)dp′. (7.108)
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Definition 7.12 Fugacity coefficient Φi is the ratio of the fugacity to the partial
pressure of the gaseous component:

Φi = fi

xip
. (7.109)

For the ideal gas, Φi = 1. Now we can express the difference μi − μid
i in terms

of the fugacity coefficient, i.e.,

μi − μid
i = RT lnΦi. (7.110)

Thus, the fugacity coefficient is a measure of the deviation of a real gas from the
ideal gas in a mixture at the same temperature, pressure and composition.

7.6.2 Activity

The activity is a quantity related to the fugacity. Usually it is used in the context of
liquids or solids.

Definition 7.13 Relative activity is a dimensionless quantity given by the formula2

a = exp

(
μ − μ0

RT

)
, (7.111)

where μ0 is the standard chemical potential whose exact definition depends on the
choice of the standard state

Definition 7.14 Standard state of a pure substance or solvent in the liquid or solid
phase is the state of the pure substance in the liquid or solid phase at the standard
pressure p0.

Here, the standard state is a real state of the pure substance at the pressure p0,
and μ0 = μ(T ,p0) depends only on temperature. The activity of the standard state
is equal to unity by definition. Formally, the activity of a pure substance depends on
both pressure and temperature. In practice, however, it is often assumed that

a ≈ 1 (7.112)

in the liquid or solid state if the pressure p does not differ too much from p0.

2The concept of absolute activity, λ = exp(μ/RT ), is also used but in this book we always mean
the relative activity a.
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Explanation The liquid and solid phases are not very compressible,3 which
means that their molar volume weakly depends on pressure. Therefore, a change
in the chemical potential caused by a change in pressure can be approximated by
the first term of the Taylor expansion around p = p0, i.e.,

μ(T ,p) − μ0(T ) ≈ v
(
T ,p0)(p − p0), (7.113)

where v is the molar volume of the liquid or solid phase. Using (7.113) and the ideal
gas equation of state: vid(T ,p0) = RT/p0, we obtain

μ(T ,p) − μ0(T )

RT
≈ v(T ,p0)

vid(T ,p0)

(
p

p0
− 1

)
. (7.114)

The typical value of the ratio v/vid is of the order 0.1 %, hence, the difference
(μ − μ0)/RT is small and the activity a ≈ 1, provided that p and p0 are not very
different.

Activity of a Substance in a Mixture The chemical potential of a component of
the ideal mixture, denoted μid

i , is given by expression (7.96):

μid
i = μ∗

i (T ,p) + RT lnxi. (7.115)

We want to modify this expression that it could be applied to real mixtures as well.
Using definition (7.13), we can express the chemical potential of the ith component
in terms of its activity:

μi = μ0
i (T ) + RT lnai. (7.116)

We can do the same with the difference between the chemical potential of the pure
substance i and its standard chemical potential, defined as μ0

i (T ) = μ∗
i (T ,p0), i.e.,

μ∗
i (T ,p) − μ0

i (T ) = RT lna∗
i , (7.117)

where a∗
i denotes the activity of the pure substance. Eliminating μ0

i from (7.116)
and (7.117), we get

μi = μ∗
i (T ,p) + RT ln

ai

a∗
i

. (7.118)

As we have already shown, the dependence of the chemical potential of a pure liq-
uid or solid on pressure can often be neglected and the approximation a∗

i = 1 can
be used. For formal reasons, however, we prefer to include a∗

i in thermodynamic re-
lations. From the comparison of (7.115) with (7.118), it follows that the ratio ai/a

∗
i

replaces the molar fraction xi in a similar way as the fugacity replaces pressure in
the case of real gases. It is convenient to express this ratio in the following form:

ai

a∗
i

= γixi, (7.119)

where γi is called the activity coefficient.

3The compressibility of a liquid becomes large only near the critical point.
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Definition 7.15 Activity coefficient γi is a dimensionless quantity defined by the
formula

RT ln(xiγi) = μi(T ,p, x1, x2, . . .) − μ∗
i (T ,p), (7.120)

where μi is the chemical potential of the ith component in a mixture and μ∗
i is

the chemical potential of that component in the pure state, at the temperature and
pressure of the mixture.

It follows from the definition that the activity coefficient is a function of T , p

and the composition, i.e.,

γi = γi(T ,p, x1, x2, . . .), (7.121)

and that γi = 1 for the pure substance (xi = 1). In the case of the ideal mixture,
γi = 1 for all components. Similarly to the fugacity coefficient w have

μi − μid
i = RT lnγi, (7.122)

where μid
i = μ∗

i +RT lnxi denotes the chemical potential of the ith component in a
hypothetical ideal mixture, at the temperature, pressure and composition of the real
mixture. Thus, all deviations from the ideal behaviour are contained in the activity
coefficient γi .

7.6.3 Dilute Solutions

Chemical Potential of a Solute We consider now a dilute solution. The index
i = 1 is assigned to the solvent and the indices i ≥ 2 are assigned to the solutes, and
we assume also that

C∑

i=2

xi = 1 − x1 � 1. (7.123)

When the sum of all molar fractions of the solutes is small, the solute molecules
practically do not interact with one another but only with the solvent molecules.
Therefore, we can assume that μi = μi(T ,p, xi) for i ≥ 2. This assumption means
that the chemical potential of the ith component depends on the molar fraction of
that component, as well as on the solvent, but it does not depend on the molar
fractions of other components.

We express the chemical potential of the solute i in terms of its activity (see
(7.116)):

μi = μ0
i (T ) + RT lnai, (7.124)

without specifying at the moment the standard chemical potential μ0
i . We assume

also that ai can be expanded in the Taylor series around xi = 0, which means that
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ai becomes proportional to xi in the limit xi → 0. Since the logarithm of the pro-
portionality coefficient, multiplied by RT , can be added to μ0

i , μi can be expressed
in the following form for small xi :

μi = μ∞
i (T ,p) + RT lnxi. (7.125)

The quantity μ∞
i , which denotes the chemical potential of a reference state, differs

from the chemical potential of the pure substance, μ∗
i , in general. The infinity sym-

bol refers to the limit of infinite dilution, xi → 0. Note that (7.125) has the same
form as in the case of ideal solutions, but the chemical potential μ∞

i depends not
only on temperature and pressure but also on the solvent, and expression (7.125) can
be used only when xi is small. However, it can be extended to less dilute solutions
if we introduce the activity coefficient in a similar way as in Definition 7.15, i.e.,

RT ln(xiγi) = μi(T ,p, x1, x2, . . .) − μ∞
i (T ,p). (7.126)

In the limit of infinite dilution, γi → 1. For the standard chemical potential of the
solute in a dilute solution we assume

μ0
i (T ) = μ∞

i

(
T ,p0). (7.127)

The difference μ∞
i − μ0

i can be expressed in terms of the activity a∞
i as follows:

μ∞
i (T ,p) − μ0

i (T ) = RT lna∞
i , (7.128)

hence, after the substitution into (7.126), we get

μi = μ0
i (T ) + RT ln

(
xiγia

∞
i

)
. (7.129)

From the comparison of the last relation with (7.124), we obtain an expression anal-
ogous to (7.119), i.e.,

ai

a∞
i

= γixi . (7.130)

At first glance it may seem strange that we use different reference states for the
solute and for the solvent. If the mixture was formed only by similar substances,
then the state of the pure substance at the temperature and pressure of the mixture
should be a good reference state for each component. However, the situation be-
comes qualitatively different, for instance, when a gas is dissolved in the liquid or
solid phase, e.g., oxygen dissolved in liquid water. In the solution, it exists in the
liquid phase, whereas as a pure substance at the temperature and pressure of the
mixture it exists in the gaseous phase. In such a case, the state of the pure substance
is not a good reference state, as it corresponds to a different phase. Then it is just
the state of the solute in an infinitely dilute solution which is a good reference state
of that solute in less dilute solutions.

Apart from the molar fraction, we can use the molality m or molar concentra-
tion c (see Definitions 7.3 and 7.4), to specify the amount of the solute in a solution.
Relation (7.126) can be transformed to have a dimensionless quantity, either m/m0

or c/c0, as an argument of the logarithm, where m0 and c0 denote the standard
molality and standard molar concentration, respectively. It is usually assumed that
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m0 = 1 mol kg−1 and c0 = 1 mol L−1. For instance, if the molality is used then the
activity coefficient of the solute is defined by the formula

RT ln

(
miγi

m0

)
= μi − μ0

i , (7.131)

where the standard chemical potential is defined as follows:

μ0
i (T ,p) = lim

mi→0

(
μi − RT ln

mi

m0

)
. (7.132)

Thus, in the limit of infinite dilution, γi tends to 1. In a similar way, we define the
activity coefficient and the standard state for the molar concentration. From the com-
parison of (7.126) with (7.132), it follows that the value of the activity coefficient
and the definition of the standard state depend on the way the composition of the
solution is specified. Now we can formulate the following definition of the standard
state of a solute.

Definition 7.16 Standard state of a solute in a solution is a hypothetical state of
the solute, at the standard molality m0 or standard pressure p0 or standard molar
concentration c0, which behaves as in an infinitely dilute solution.

We simply want to assign a certain state of the solute to the chemical potential
μ0

i . It is not a state of the pure substance but a state of the solute in a solution of a
specified composition. From Eqs. (7.126) and (7.131), it follows that we can do it
by assuming γi = 1, which corresponds to an infinitely dilute solution. However, the
values of thermodynamic parameters for which μi = μ0

i , do not correspond to infi-
nite dilution. For instance, xi = 1 and p = p0 are to be substituted into Eq. (7.126),
to get μ0, and in Eq. (7.131), we have to substitute mi = m0. For this reason, we talk
about a hypothetical state, since it is not a real state of the solute. We note also that
since the standard state corresponds to a specified composition, μ0 depends only on
temperature for p = p0. However, if the standard state is defined by the condition
mi = m0 or ci = c0 then μ0 depends on both temperature and pressure.

Chemical Potential of the Solvent We recall the Gibbs–Duhem equation at con-
stant T and p (see (7.23)):

C∑

i=1

xidμi = 0. (7.133)

Using this equation, we can easily determine the chemical potential of the solvent,
μ1, in the limit of infinite dilution. Substituting (7.125) into (7.133), we get

x1dμ1 +
C∑

i=2

xidμi = x1dμ1 + RT

C∑

i=2

dxi = 0, (7.134)

hence, x1dμ1 = RT dx1 because
∑C

i=2 dxi = −dx1. Therefore,

μ1 = μ∗
1(T ,p) + RT lnx1, (7.135)
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where we have taken the chemical potential of the pure solvent as the integration
constant. Note that μ1 has exactly the same form as in the case of ideal mixtures,
but relation (7.135) holds only in the limit x1 → 1, in general.

7.6.4 Excess Functions

Real mixtures differ from the ideal mixture and this difference can be conveniently
expressed in terms of excess functions.

Definition 7.17 Excess function expresses the deviation of a state function of a mix-
ture from the value of that function in a hypothetical ideal mixture, at the tempera-
ture, pressure and composition of the given mixture.

We mark the excess functions with the index E. For instance, the excess chemical
potential of the ith component, μE

i , is defined as

μE
i = μi(T ,p, x1, x2, . . .) − μid

i (T ,p, xi). (7.136)

Comparing (7.136) with (7.122), we find that

μE
i = RT lnγi. (7.137)

In the case of an extensive quantity Y = Y(T ,p,n1, . . . , nC), we have

YE = Y − Y id =
[
Y −

c∑

i=1

niy
∗
i (T ,p)

]
−

[
Y id −

c∑

i=1

niy
∗
i (T ,p)

]
, (7.138)

where y∗
i denotes the molar counterpart of Y for the pure substance i. We know

from Definition 7.6 that the expressions in brackets are the functions of mixing for
Y and Y id, respectively, hence, YE can also be expressed as

YE = �MY − �MY id. (7.139)

If �MY id = 0 then YE = �MY . For instance, this is the case of the enthalpy of
mixing, �MH , and the volume of mixing, �MV , which vanish in the ideal mixture.
For the Gibbs free energy, we have

GE =
C∑

i=1

niμ
E
i = RT

C∑

i=1

ni lnγi. (7.140)

If we know the dependence of the activity coefficients on temperature and pressure
we can determine the excess entropy SE and excess volume V E from the following
relations:

SE = −
(

∂GE

∂T

)

p,ni

, (7.141)

V E =
(

∂GE

∂p

)

T ,ni

. (7.142)
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7.7 Phase Rule

In Chap. 6, we derived the condition of phase coexistence in the case of a pure sub-
stance. To generalize this condition to mixtures, we use the necessary condition for a
minimum of the Gibbs free energy: dG = 0, at constant T and p (see (5.75)). Each
phase forms a separate homogeneous subsystem. When temperature and pressure
are the same in all subsystems the whole system is in thermodynamic equilibrium
if also the condition of equilibrium with respect to matter flow is satisfied. This
requires that the chemical potential of each component has the same value in all
phases (subsystems).

Corollary 7.4 The condition of coexistence of the phases α, β , γ , . . . is the equality
of the chemical potentials: μα

i = μ
β
i = μ

γ

i = · · · , for each component i.

We assume now that P phases coexist in a mixture of C components. The com-
ponents are numbered with the index i = 1, . . . ,C and the phases are numbered
with the index φ = 1, . . . ,P . The temperature and pressure have the same values in
all phases. For each phase, the Gibbs–Duhem equation (see (7.21)) holds, i.e.,

sφdT − vφdp +
C∑

i=1

x
φ
i dμ

φ
i = 0, (7.143)

where sφ and vφ denote the molar entropy and molar volume of the phase φ, and
x

φ
i and μ

φ
i denote the molar fraction and chemical potential of the ith component

in this phase, respectively. The Gibbs–Duhem equation is a relation between C + 2
intensive parameters: T , p, and μ

φ
1 , . . . ,μ

φ
C , hence, C + 1 of them can be varied

independently. Since T and p have the same values in all phases, there are C −1 in-
dependent chemical potentials for each phase. Therefore, the number of independent
intensive parameters in the system, including T and p, amounts to P(C − 1) + 2.
Then we have to take into account the condition of phase coexistence. It has the
form of P − 1 independent equations for each component i, for instance,

μ
φ
i = μ1

i , (7.144)

for φ = 2, . . . ,P , which gives C(P −1) independent equations altogether. Subtract-
ing the number of equations from the number of independent intensive variables, we
find the number of degrees of freedom f for the system:4

f = C − P + 2. (7.145)

It specifies the number of independent intensive parameters in the system that can
be changed without violation of the P -phase coexistence. Relation (7.145) is called
the phase rule (or the Gibbs phase rule). From the inequality f ≥ 0, it follows that

P ≤ C + 2. (7.146)

4It should not be confused with the number of degrees of freedom of a molecule and with the
fugacity, for which we have used the same symbol.
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The case P = C +2 corresponds to the maximum number of phases that can coexist
in a C-component system.

Example 7.7 For a pure substance, we have C = 1 and f = 3 − P , hence P ≤ 3.
For one phase (P = 1), there are two degrees of freedom (f = 2) since T and p can
be varied independently. On a phase diagram, a single phase is represented by a two-
dimensional region in the Tp plane. For the two-phase coexistence (P = 2), there
is one degree of freedom (f = 1) since either T or p can be varied independently.
On a phase diagram, the two-phase coexistence is represented by a line. In the case
of three phases (P = 3), we have f = 0, which means that T and p have definite
values. This corresponds to the triple point on a phase diagram.

Example 7.8 In the case of two components, f = 4−P , hence P ≤ 4. Thus, the co-
existence of four phases is possible. For a single phase (P = 1) we have f = 3. As
independent intensive parameters, we can choose, for instance, T , p and the chem-
ical potential of the first component, μ1. For the two-phase coexistence (P = 2),
there are two degrees of freedom (f = 2) and usually T and p are used as inde-
pendent parameters. On a three-dimensional phase diagram, the coexistence of two
phases can be represented as the surface μ1 = μ1(T ,p). In practice, the molar frac-
tion x1 rather than μ1 is used as the third parameter. Then the coexistence of the
phases α and β is represented by two surfaces: x1 = xα

1 (T ,p) and x1 = x
β

1 (T ,p),
since the molar fractions, as the molar entropy and volume, are discontinuous at a
first-order phase transition. Usually one of the parameters, e.g., pressure, is fixed
and the lines x1 = xα

1 (T ) and x1 = x
β

1 (T ) are drawn. Inverting the relation between
T and x1, we obtain the composition lines for the two phases, i.e., T = T α(x1) and
T = T β(x1). The compositions of the coexisting phases at the given temperature T0
correspond to the intersections of the line T = T0 with the composition lines (see
Chaps. 8 and 9).

7.8 Exercises

7.1 In a solution, the partial molar volume of the component A, of the molar
mass MA = 58 g mol−1, amounts to vA = 74 cm3 mol−1, and the partial molar
volume of the component B , of the molar mass MB = 118 g mol−1, amounts to
vB = 80 cm3 mol−1. The molar fraction of B is equal to xB = 0.45, and the mass of
the solution amounts to 0.85 kg. Determine the volume of the solution.

7.2 Show that the partial molar enthalpy of the ith component, hi , satisfies the
relation

(
∂hi

∂p

)

T ,x

= −T 2
(

∂vi/T

∂T

)

p,x

,

where the index x means that we differentiate at constant composition.
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7.3 Prove that if the chemical potential of each component in a mixture has the
form: μi = μ∗

i + RT lnxi , where μ∗
i is a function of temperature and pressure, then

the Gibbs–Duhem equation at constant T and p is always satisfied.

7.4 In a two-component mixture A + B , the chemical potentials are assumed to
have the following form:

μA = μ∗
A + RT lnxA + W(xB),

μB = μ∗
B + RT lnxB + W(xA),

where W(x) is a polynomial and W(0) = 0. The coefficients of the polynomial, as
well as μ∗

A and μ∗
B , are some functions of temperature and pressure. What form

should the polynomial W(x) have, to satisfy the Gibbs–Duhem equation at constant
T and p, i.e., xAdμA + xBdμB = 0?

7.5 Find the Gibbs free energy of mixing per one mole of the mixture A+B defined
in Exercise 7.4.

7.6 Assuming that the partial molar volumes of the components in the mixture
A + B are analytic functions of the molar fraction xA, show that (∂vB/∂xA)T ,p = 0,
for xA = 0, and (∂vA/∂xB)T ,p = 0, for xB = 0. Find the form of the Taylor expan-
sion of the function vA(xB) around xB = 0 and vB(xA) around xA = 0.

7.7 The partial molar volumes of the components in the two-component mixture
A + B are given by the following expressions:

vA = v∗
A + ax2

B − 2

3
(a − b)x3

B,

vB = v∗
B + bx2

A + 2

3
(a − b)x3

A,

where v∗
A, v∗

B , a and b are functions of temperature and pressure. Show that vA and
vB satisfy the equation xAdvA + xBdvB = 0 at constant T and p, and then find the
volume of mixing per one mole of the mixture.

7.8 Assuming that air is an ideal mixture of the composition: xN2 = 0.781, xO2 =
0.210, xAr = 0.009, calculate its entropy of mixing per mole.

7.9 Calculate the partial pressures and total pressure for the mixture of gases that
form air, at the temperature of 0 °C. The molar volume of the mixture amounts to
22.4 L mol−1. Assume that air is a mixture of ideal gases whose composition is
specified in Exercise 7.8.

7.10 The entropy of mixing of a certain mixture is the same as in the case of ideal
mixtures, and the enthalpy of mixing does not vanish, but it is independent of pres-
sure. What can be said about the volume of mixing and internal energy of mixing?
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7.11 Show that if the volume of mixing does not depend on temperature then the
entropy of mixing does not depend on pressure.

7.12 Calculate the fugacity f (T ,p) of the gas characterized by the following equa-
tion of state:

pv

RT
= 1 + B(T )p + C(T )p2.

7.13 Derive expressions for the coefficients B(T ) and C(T ) in Exercise 7.12 for
a gas which satisfies the van der Waals equation of state, and then compute them,
assuming a = 0.15 J m3 mol−2, b = 4 × 10−5 m3 mol−1 and T = 273.15 K. Calcu-
late also the fugacity coefficient Φ = f/p at the pressure p = 5 bar and temperature
T = 273.15 K.

7.14 Using the solution of Exercise 6.17, express the fugacity of the van der Waals
gas as a function of the temperature T and molar volume v. Then calculate the
fugacity coefficient at T = Tcr and p = pcr.

7.15 What is the dimension of a region representing three-phase coexistence in a
four-component system?

7.16 What is the minimal number of components in a system in which five phases
can coexist?



Chapter 8
Phase Equilibrium in Ideal Mixtures

In this chapter, we use the concept of ideal mixture, to study phase transitions in
multi-component systems, i.e., we assume that the chemical potential of a substance
in mixture has the following simple form:

μi(α,T ,p, xi) = μ∗
i (α,T ,p) + RT lnxi, (8.1)

where α can refer to the gaseous (g), liquid (l) or solid (s) phase and μ∗
i denotes

the chemical potential of pure substance (xi = 1). To denote the dependence of the
chemical potential on the phase, we will often use the notation μi(α), which is
common in physical chemistry. In the case of mixtures, it is more convenient than
the notation μα

i , since the latter leads to rather cumbersome symbols like μ∗
i
α . The

same convention is also applied to other state functions.
Phase diagrams for systems composed of more than two components can be quite

complex. Therefore, we restrict ourselves only to two-component mixtures, whose
components are labeled with the capital letters A and B . We consider the liquid–gas
and liquid–solid equilibrium, and also a sort of liquid–liquid coexistence known as
osmotic equilibrium.

8.1 Liquid–Gas Equilibrium

8.1.1 Raoult’s Law

Raoult’s law applies to ideal solutions in the liquid phase, in equilibrium (coexis-
tence) with the gaseous phase treated as a mixture of ideal gases. Raoult’s law states
that the partial pressure of a given component in the vapour above the solution is
proportional to the molar fraction of that component in the solution, i.e.,

pA = p∗
AxA, (8.2)

pB = p∗
BxB, (8.3)
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Fig. 8.1 Partial pressures pA

and pB , and the total pressure
of the vapour above the
solution, p, against the molar
fraction of the component A,
for a solution to which
Raoult’s law applies. The
vertical lines xA = 0 and
xA = 1 correspond to pure
components B and A,
respectively

where p∗
A = p∗

A(T ) and p∗
B = p∗

B(T ) denote the vapour pressures at the liquid–
vapour coexistence for the pure A and B , at the temperature of the solution. His-
torically, Raoult’s law was formulated as a result of observation of similar liquids,
whose mixing is well described by the ideal mixture approximation.

Because of the relation xA + xB = 1, the composition of the solution is de-
fined by one molar fraction, which we usually choose to be xA. Using Dalton’s
law (see (7.85)), we can determine the total vapour pressure above the solution:

p = pA + pB = p∗
B + (

p∗
A − p∗

B

)
xA. (8.4)

The plot of the partial and total pressures against the solution composition is shown
in Fig. 8.1. Note that the partial pressures can also be expressed as functions of the
total pressure p. To show this, we first determine xA from (8.4):

xA = p − p∗
B

p∗
A − p∗

B

, (8.5)

and then substitute it into (8.2) and (8.3), hence

pA = p∗
A(p − p∗

B)

p∗
A − p∗

B

, (8.6)

pB = p∗
B(p∗

A − p)

p∗
A − p∗

B

. (8.7)

Derivation of Raoult’s Law We focus on the component A since the same rea-
soning can be repeated for the second component. For the liquid phase (l) and
gaseous phase (g), we have, respectively:

μA(c,T ,p, xA) = μ∗
A(c,T ,p) + RT lnxA, (8.8)

μA(g,T ,pA) = μ0
A(T ) + RT ln

pA

p0
, (8.9)

where we have used relation (7.88) for the ideal gas. At the liquid–vapour coexis-
tence for the pure substance A, the following equality holds:

μ∗
A

(
c,T ,p∗

A

) = μ∗
A

(
g,T ,p∗

A

) = μ0
A(T ) + RT ln

p∗
A

p0
. (8.10)



8.1 Liquid–Gas Equilibrium 183

Using Eqs. (8.8), (8.9) and (8.10), and the condition that μA must have the same
value in the solution and in the vapour above the solution, we get

μ∗
A(c,T ,p) + RT lnxA − μ∗

A

(
c,T ,p∗

A

) = RT ln
pA

p∗
A

, (8.11)

hence

ln
pA

p∗
AxA

= μ∗
A(c,T ,p) − μ∗

A(c,T ,p∗
A)

RT
. (8.12)

Raoult’s law (8.2) is satisfied if the right-hand side of (8.12) equals zero. It is not
true, in general, but we have already mentioned (see (7.114)) that a change in the
chemical potential of the liquid or solid phase due to a small change in pressure
is small compared to RT . Here the pressure of the liquid–vapour equilibrium has a
value between p∗

A and p∗
B . If the components A and B do not differ much from each

other then the pressure p∗
A is rather close to p∗

B . In what follows, we neglect a small
difference between them and assume that relations (8.2) and (8.3) are satisfied for
all compositions of the solution.

8.1.2 Liquid–Vapour Phase Diagram at Constant Temperature

It follows from the phase rule (7.145) that a two-component system in which two
phases coexist has two degrees of freedom. This means that temperature and pres-
sure can be changed independently from each other. Phase diagrams for a binary
mixture are usually presented in the xAp plane, at constant temperature, or in the
xAT plane, at constant pressure. Here we consider the case T = const .

The phase diagram of the ideal solution is shown in Fig. 8.2. The upper line,
called the liquid composition line, defines the relation between the pressure and
composition of the solution in equilibrium with the vapour. We know from Raoult’s
law that it is a straight line given by formula (8.4). To emphasize that the dependence
of p on the molar fraction in the liquid phase is concerned, we write:

p(l, xA) = p∗
B + (

p∗
A − p∗

B

)
xA. (8.13)

The lower line, called the vapour composition line, defines the relation between
the pressure and composition of the gaseous phase in equilibrium with the solution.
To determine the vapour composition line, we use the relation between the partial
pressure and the molar fraction of A in the gaseous phase, which is assumed to be a
mixture of ideal gases, hence

xA = pA

p
. (8.14)

Substituting pA given by formula (8.6) into (8.14) and solving the linear equation
for p, we obtain the vapour composition line:

p(g, xA) = p∗
Ap∗

B

p∗
A + (p∗

B − p∗
A)xA

. (8.15)
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Fig. 8.2 Liquid–vapour equilibrium for the ideal solution at constant temperature. The upper and
lower lines represent the liquid and vapour composition lines, respectively. The two-phase region
in between corresponds to the liquid–vapour coexistence. The horizontal (dashed) line shows a
certain value of pressure, p = p0. The composition of the liquid and vapour which coexist at p0
corresponds to the points a and b, respectively. A mixture whose composition represented by the
point d is in the two-phase region, separates into the liquid and gaseous phases in the proportion
given by the lever rule (see (8.23))

From expressions (8.13) and (8.15), the inequality

p(l, xA) ≥ p(g, xA), (8.16)

follows, where p(l,0) = p(g,0) = p∗
B and p(l,1) = p(g,1) = p∗

A, which means
that for 0 < xA < 1, the liquid composition line is above the vapour one as shown
in Fig. 8.2.

To determine the composition of the liquid and gaseous phases at coexistence,
we have to solve the equations:

p0 = p(l, xA), (8.17)

p0 = p(g, xA), (8.18)

for the given value of pressure, p0, which is done graphically in Fig. 8.2. The inter-
section of the horizontal line p = p0 with the liquid composition line (Eq. (8.17))
gives the liquid composition xA. Similarly, the intersection of the horizontal line
with the vapour composition line (Eq. (8.18)) gives the vapour composition, which
is denoted yA, to distinguish it from the liquid composition. The molar fractions
xA and yA depend on pressure and temperature. The vapour is richer in the more
volatile component, i.e., that one whose vapour pressure at the liquid–vapour co-
existence of a pure substance is higher than for the other component at the same
temperature. In the case considered, it is the component A (p∗

A > p∗
B ), therefore,

yA > xA.
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8.1.3 Lever Rule

A mixture whose composition x̄A is between xA and yA, at given values of temper-
ature and pressure, does not exist as a single phase, but separates into the liquid and
gaseous phases. To determine the amount of each phase, we use the two obvious
relations:

nA = nA(l) + nA(g), (8.19)

nB = nB(l) + nB(g), (8.20)

where nA, nA(l) and nA(g) denote the total mole number of the component A and
the mole numbers of A in the liquid and gaseous phases, respectively, and analo-
gously for the component B . Adding (8.19) to (8.20), we get

n = nA + nB = n(l) + n(g), (8.21)

where n(l) = nA(l) + nB(l) and n(g) = nA(g) + nB(g). From the definition of the
molar fraction, we derive the following relations: nA = x̄An, nA(l) = xAn(l) and
nA(g) = yAn(g), hence

x̄A

[
n(l) + n(g)

] = nA = xAn(l) + yAn(g). (8.22)

Finally, we write the last relation in the form called the lever rule:

n(l)(x̄A − xA) = n(g)(yA − x̄A), (8.23)

which allows to determine the proportion of the two phases for the given composi-
tion x̄A. Note that (8.23) has a similar meaning as the lever rule for a pure substance
(see (6.43)), but instead of the molar volume we have the molar fraction.

8.1.4 Liquid–Vapour Phase Diagram at Constant Pressure

The liquid and vapour composition lines defined by relations (8.13) and (8.15) de-
pend also on temperature through p∗

A(T ) and p∗
B(T ) (see relation (6.42)). Therefore,

for a given value of pressure, we obtain the liquid and vapour composition lines
in the xAT plane, i.e., the functions T (l, xA) and T (g, xA), respectively, solving
Eqs. (8.17) and (8.18) with respect to temperature. In this case, however, we usually
cannot derive the explicit form of these functions. Both lines are shown schemati-
cally in Fig. 8.3. Now the liquid corresponds to the lower part of the diagram and
the vapour corresponds to the upper part. We assume that atmospheric pressure is
exerted on the solution, because this is the most common situation in practice. The
boiling points of pure substances, T ∗

A and T ∗
B , are different, in general, and the more

volatile component boils at a lower temperature. In the case considered, it is the
component A (T ∗

A < T ∗
B ). The boiling point of a solution is the point on the liquid

composition line at a given composition of the solution. In the case of ideal solu-
tions, the boiling point of a solution lies always between the boiling points of pure
components.
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Fig. 8.3 Liquid–vapour equilibrium for the ideal solution at constant pressure. The liquid–vapour
two-phase region is between the liquid composition line (lower line) and the vapour composition
line (upper line). The horizontal segments (dashed line) show selected values of temperature, and
their end-points correspond to the composition of coexisting phases. Idea of distillation. A solution
of the composition a1 is heated at constant pressure to the boiling point T1. The vapour of the
composition a2 is removed from the system and then cooled down to the temperature T2. Then
the solution formed is again brought to boiling at T2 < T1. The vapour of the composition a3 at
T = T2 is again removed from the system. The process repeats until practically pure components
are obtained

The difference between the liquid and vapour composition at the liquid–vapour
coexistence can be used to separate components of a mixture in the distillation pro-
cess. The idea of distillation is presented in Fig. 8.3. Suppose that we start with a
solution, of the composition a1, rich in the less volatile component B . The liquid
heated at constant pressure begins to boil at the temperature T1. The vapour in equi-
librium with the liquid at T = T1 has the composition a2 > a1, i.e., it is richer in the
more volatile component A. Then the vapour of the composition a2 is taken away
from the system and cooled down to the temperature T2, at which it changes into
the liquid phase. The solution formed in this way contains more component A than
the original solution. In the next step, the liquid of the composition a2 boils at the
temperature T2, giving a vapour of the composition a3 > a2, which is again removed
from the system. Repeating this process, we obtain a solution of increasingly high
content of the component A and lower and lower boiling point, whereas the liquid
remaining in the system becomes increasingly rich in the component B . Since the
boiling point of the ideal solution changes monotonically with the composition, the
distillation process allows to separate the components practically with an arbitrary
accuracy. We will see later that components of some real solutions can be separated
by distillation only up to a definite composition.

8.1.5 Boiling Point of a Solution

We are going to investigate how the boiling point of the pure solvent A changes
when a small amount of the substance B is dissolved in it at constant external pres-
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sure. We assume that the mixture forms an ideal solution. To maximally simplify
the problem, we assume also that the substance B is non-volatile. This means that
the amount of the component B in the vapour is negligible compared to the compo-
nent A, hence we can put p∗

B = 0.
Due to the presence of the non-volatile component the boiling point of the solu-

tion must exceed the boiling point of the pure solvent, T ∗
A . According to Raoult’s

law the vapour pressure above the solution satisfies the inequality

pA = p∗
AxA < p∗

A, (8.24)

where xA is the molar fraction of the solvent in the solution. Boiling occurs when
the pressure of the vapour above the solution equals the external pressure p. For the
pure solvent, we have

p∗
A

(
T ∗

A

) = p. (8.25)

The pressure p∗
A increases with temperature, hence the equality

pA(T ) = p∗
A(T )xA = p (8.26)

is satisfied at a temperature T higher than T ∗
A .

To determine quantitatively the elevation of the boiling point, we use the equality
of the chemical potential of the solvent in the liquid and gaseous phases, taking into
account that only the component A is present in the vapour, i.e.,

μA(l) = μ∗
A(l, T ,p) + RT lnxA = μ∗

A(g,T ,p). (8.27)

At a given pressure and composition, the temperature at which Eq. (8.27) is satis-
fied is the boiling point of the solution, Tb; for xA = 1, Tb = T ∗

A . Equation (8.27)
is solved graphically in Fig. 8.4. Note that the lines of temperature dependence
of μ∗

A(l) and μ∗
A(g) extend beyond their intersection corresponding to the liquid–

vapour coexistence in the pure solvent. This is related to the existence of metastable
states: a superheated liquid and supersaturated vapour. A metastable state corre-
sponds to a local minimum of the Gibbs free energy, whereas a stable state cor-
responds to the absolute minimum of G, at the given temperature and pressure.
The existence of metastable states is crucial for our consideration, because to solve
Eq. (8.27), we have to assume that μ∗

A(l) is well defined also for temperatures
slightly higher than T ∗

A , for which the stable state of the system is the gaseous phase.
Denoting by �μ∗

A = μ∗
A(g) − μ∗

A(l) the difference between the chemical poten-
tial of the pure solvent in a stable gaseous phase and in a metastable liquid phase,
we can express (8.27) as follows:

lnxA = �μ∗
A

RT
. (8.28)

Then we use the Gibbs–Helmholtz relation:
(

∂G/T

∂T

)

p,n

= − H

T 2
, (8.29)

the derivation of which is presented at the end of this section. As we know, the
chemical potential of a pure substance is equal to its molar Gibbs free energy, hence,
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Fig. 8.4 Boiling point elevation in a solution of the substance A (solvent) with a non-volatile
substance B (solute). The chemical potentials μ∗

A(l) and μ∗
A(g) refer to the liquid and gaseous

phases of the pure solvent (solid line), respectively, and μA(l) denotes the chemical potential of
the solvent in the solution (dashed line). The intersection of μ∗

A(l) with μ∗
A(g) corresponds to the

boiling point of the pure solvent, T ∗
A , and the intersection of μA(l) with μ∗

A(g) corresponds to the
boiling point of the solution, Tb > T ∗

A

differentiating both sides of (8.28) with respect to T at constant pressure and using
(8.29), we get

(
∂ lnxA

∂T

)

p

= −�h∗
A

RT 2
, (8.30)

where �h∗
A denotes the enthalpy of evaporation of the pure solvent at the boiling

point of the solution. The elevation of the boiling point is small, provided that the
amount of the solute B is small, which we assumed at the very beginning. Therefore,
we can approximate �h∗

A by the enthalpy of evaporation of the pure solvent at its
boiling point T ∗

A . Then we integrate (8.30) over T from T = T ∗
A to T = Tb , hence

lnxA = �h∗
A

R

(
1

Tb

− 1

T ∗
A

)
. (8.31)

Expression (8.31) can be simplified, because for small xB we have

lnxA = ln(1 − xB) ≈ −xB ≈ −nB

nA

, (8.32)

1

Tb

≈ 1

T ∗
A

− �Tb

(T ∗
A)2

, (8.33)

where �Tb = Tb −T ∗
A . Finally, we arrive at the following relation between the boil-

ing point of the solution and the amount of the solute:

�Tb = R(T ∗
A)2

�h∗
A

nB

nA

. (8.34)
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In the case of dilute solutions, a convenient measure of the composition is the
molality of the solute (see Definition 7.4), expressed usually in the units mole per
kilogram. Denoting the molality of the solute by mB , we can write (8.34) as follows:

�Tb = KbmB, (8.35)

where the proportionality coefficient Kb is called the ebullioscopic constant. Recall
that we calculate mB , dividing the mole number of the solute by the mass of the
solvent:

mB = nB

nAMA

, (8.36)

where MA is the molar mass of the solvent. From Eqs. (8.34), (8.35) and (8.36), we
obtain the following formula for the ebullioscopic constant:

Kb = MAR(T ∗
A)2

�h∗
A

, (8.37)

whose unit is K kg mol−1. It can be inferred from (8.37) that Kb depends only on
the solvent. Therefore, relation (8.35) can be used to determine the molar mass of
an unknown non-volatile substance. If we know the mass of the solvent and the
constant Kb then by measurement of the boiling point of the solution, we determine
the molality mB and hence also the mole number of the solute. Then, dividing the
mass of the solute by the mole number, we obtain its molar mass.

Derivation of the Gibbs–Helmholtz Relation
(

∂G/T

∂T

)

p,n

= 1

T

(
∂G

∂T

)

p,n

− G

T 2
= −T S + G

T 2
, (8.38)

where we have used the relation (∂G/∂T )p,n = −S. From the definition of the
Gibbs free energy and enthalpy, we have G = U − T S + pV = H − T S, hence
G + T S = H , which ends the proof of relation (8.29).

8.1.6 Solubility of Gases in Liquids. Henry’s Law

When we open a bottle of carbonated water the number of gas bubbles increases
rapidly. Carbonated water is simply a solution of liquid water as a solvent and CO2
as a solute. In a closed bottle, CO2 in the gaseous state is in equilibrium with CO2 in
the solution at a slightly higher pressure than atmospheric pressure. When we open
the bottle the gas pressure decreases rapidly, which causes the excess of CO2 dis-
solved in water to escape from the solution. This means that the amount of gas which
can be dissolved in a liquid at a given temperature depends on the gas pressure.

We assume that a small amount of the substance B , which in the pure state exists
in the gaseous phase in the temperature range of interest, is dissolved in the liquid
solvent A. The solution and the gas phase are in equilibrium with each other. When
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the molar fraction of the solute B , xB , tends to zero, the partial pressure of the gas
above the solution, pB , also tends to zero. The limit of the ratio pB/xB , i.e.,

kB = lim
xB→0

pB

xB

, (8.39)

is called the Henry constant. Note that xB = 0 corresponds to the liquid–vapour
equilibrium for the pure solvent, which depends on temperature, therefore, kB is
also a function of temperature. The Henry constant depends also on both the solute
and solvent. This is not surprising because behaviour of the solute molecules in a
very dilute solution results mainly from their interaction with the solvent molecules.
From (8.39), it follows that for small values of xB Henry’s law holds:

pB = kBxB. (8.40)

Definition 8.1 Ideal dilute solution is such a dilute solution that Henry’s law applies
to the solute.

Note that although relation (8.40) resembles Raoult’s law (8.3), the proportionality
coefficient between pB and xB is usually different. In fact, the quantity p∗

B may not
even exist, as it refers to the liquid–vapour equilibrium for the pure solute, whereas
the temperature of the solution is usually higher than the critical temperature of the
gas dissolved. Nevertheless, Henry’s law applies also to solutions of two liquids.
We will return to this problem in the next chapter, where we discuss deviations from
Raoult’s law in real solutions.

8.1.7 Ostwald Absorption Coefficient

According to Henry’s law, the molar fraction of a solute in a dilute solution is related
to the partial pressure of that solute in the gaseous phase coexisting with the solution
by formula (8.40). If the solvent A can be considered a non-volatile substance then
the total pressure above the solution amounts to p = pB . Thus, the solubility of a
gas in a non-volatile liquid is proportional to the gas pressure above the solution,
i.e.,

xB = p

kB

. (8.41)

In a dilute solution, xB � 1, hence

xB ≈ nB

nA

= VB

v∗
B

v∗
A

VA

, (8.42)

where VA and VB denote the volume occupied by the solvent and gas, respectively,
in their pure states, and v∗

A and v∗
B are their molar volumes. If the gas pressure is low

we can use the ideal gas equation of state: pv∗
B = RT , which together with relations

(8.41) and (8.42) gives

VB

VA

= RT

kBv∗
A

. (8.43)
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The ratio of the volume of the gas dissolved to the volume of the liquid solvent,
VB/VA, is called the Ostwald absorption coefficient. From relation (8.43), it follows
that it is a function of temperature, however, due to small compressibility of liquids
it is almost independent of pressure. In practice, Ostwald absorption coefficient is
determined as the volume of the gas dissolved in the unit volume of the liquid, at a
given temperature and the pressure of 1 bar.

We conclude from relation (8.41) that if the Henry constant increases with tem-
perature then the solubility of the gas in the liquid decreases. For instance, this is the
case of ammonia dissolved in water. It is not a general rule, however. For the solution
of hydrogen in hexane, for instance, the Henry constant is a decreasing function of
temperature. In general, the dependence of the Henry constant on temperature does
not have to be monotonic. Such a non-monotonic behaviour of the Henry constant
is observed, e.g., in the solutions of oxygen and nitrogen in water. For tempera-
tures below about 360 K, the Henry constant increases with temperature, whereas
at higher temperatures, it is a decreasing function of temperature. This means that
at lower temperatures, the solubility of oxygen and nitrogen in water decreases with
increasing temperature, whereas at higher temperatures it begins to increase.

If a liquid solution is in equilibrium with a mixture of gases, then Henry’s law
applies to each gas separately, provided that the solution is dilute. Because of differ-
ent values of the Henry constant for different gases, their proportion in the solution
is usually different than in the gaseous phase. For instance, at a temperature of 18 °C
the proportion of oxygen in air dissolved in water amounts to 34.1 %, whereas the
proportion of oxygen in the atmosphere amounts to 21.1 %.

8.2 Liquid–Solid Equilibrium

8.2.1 Freezing Point of a Solution

We are going to show that a solution freezes at a lower temperature than the pure
solvent. This phenomenon is analogous to the boiling point elevation discussed in
Sect. 8.1.5.

We consider a solution of a small amount of the substance B , e.g., common salt,
dissolved in the liquid solvent A, e.g., water. We are interested in the effect of the
solute on the freezing point of the solution. For simplicity, we assume that A does
not form a solid solution with B , i.e., the solution crystallizes in the form of the
pure substance A. It is a similar assumption to that the molecules of the solute are
absent from the vapour above the solution, made in Sect. 8.1.5. The condition of
liquid–solid equilibrium for the ideal solution has the following form:

μA(l) = μ∗
A(l, T ,p) + RT lnxA = μ∗

A(s, T ,p). (8.44)

We have simply replaced in formula (8.27) the chemical potential of the solvent
in the gaseous phase, μ∗

A(g), with its chemical potential in the solid phase, μ∗
A(s).
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Fig. 8.5 Freezing point depression in a solution of the solvent A with the solute B; A and B do
not form a solid solution. The chemical potentials μ∗

A(l) and μ∗
A(s) refer to the pure solvent in the

liquid and solid phases (solid line), respectively, and μA(l) denotes the chemical potential of the
solvent in the liquid solution (dashed line). The intersection of μ∗

A(l) with μ∗
A(s) corresponds to

the freezing point of the pure solvent, T ∗
A . The intersection of μA(l) with μ∗

A(s) corresponds to the
freezing point of the solution, Tf < T ∗

A

Condition (8.44) is satisfied only if μ∗
A(l) > μ∗

A(s) at the freezing point of the so-
lution, Tf , which is shown in Fig. 8.5. Thus, the temperature Tf must be slightly
lower than the freezing point of the pure solvent, T ∗

A . At the temperature Tf , the
pure solvent has a lower chemical potential in the solid phase than in a metastable
supercooled liquid phase.

The formula for Tf is derived in the same way as in Sect. 8.1.5. Therefore, we
can use Eq. (8.31), replacing only Tb with Tf and the enthalpy of evaporation with
the enthalpy of freezing with the minus sign, since freezing is the reverse of melting,
hence

lnxA = �h∗
A

R

(
1

T ∗
A

− 1

Tf

)
. (8.45)

For a dilute solution, we can also repeat the reasoning presented in Sect. 8.1.5.
Finally, we obtain the following expression for the freezing point depression:

�Tf = −Kf mB, (8.46)

where �Tf = Tf − T ∗
A , mB is the molality of the solute, and the proportionality

coefficient

Kf = MAR(T ∗
A)2

�h∗
A

(8.47)

is called the cryoscopic constant. This phenomenon is commonly used in the winter
when roads are sprinkled with salt, which causes that a liquid solution of water and
salt, instead of ice, persists even at temperatures well below 0 °C. Note that the
freezing point depression, as well as the boiling point elevation, depends only on
the mole number of the solute and not on its nature.
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8.2.2 Solubility of Solids in Liquids

What happens when we add the solid substance B to the liquid solvent A? A small
amount of B added to the solvent dissolves in it, i.e., it undergoes a transition to
the liquid phase. At a given temperature, a definite amount of the substance B can
be dissolved in the unit mass of the solvent A. It means that there exists a maxi-
mum concentration of B in the solution, which is then called the saturated solution.
Adding more B , we simply observe equilibrium between the solution in the solid
and liquid phases. Moreover, we assume that the solid phase is the pure substance B .
It is a realistic assumption because different molecules of the solvent and solute can-
not, in general, form a common crystalline structure too easily. Note that we made
the same assumption in Sect. 8.2.1 in relation to the solvent. Also the condition
of phase equilibrium has a form analogous to condition (8.44), but in this case it
concerns the solute instead of the solvent, i.e.,

μB(l) = μ∗
B(l, T ,p) + RT lnxB = μ∗

B(s, T ,p). (8.48)

The chemical potential μ∗
B(l) refers to a metastable liquid phase, i.e., the super-

cooled liquid of the substance B . We transform Eq. (8.48) into the following form:

lnxB = −�μ∗
B

RT
, (8.49)

where �μ∗
B = μ∗

B(l) − μ∗
B(s), which expresses the composition of the saturated

solution as a function of temperature and pressure. At the melting point of the pure
B , T ∗

B , we have �μ∗
B = 0 and xB = 1.

Then we differentiate (8.49) with respect to T at constant pressure and use the
Gibbs–Helmholtz relation (8.29), to get

(
∂ lnxB

∂T

)

p

= �h∗
B

RT 2
, (8.50)

where �h∗
B denotes the enthalpy of melting for the pure B . If we assume that �h∗

B

does not depend on temperature in the range of temperature of our interest then we
can integrate (8.50) from T to T ∗

B , which gives

lnxB = �h∗
B

R

(
1

T ∗
B

− 1

T

)
. (8.51)

Relation (8.51) defines the line of the solid–liquid equilibrium in the solution, which
is called the solubility line. In the case of ideal solutions, we talk about ideal solu-
bility of a solid in a liquid, which does not depend on the solvent nature. Note that
because xB ≤ 1 and �h∗

B > 0, expression (8.51) makes sense only when tempera-
ture is lower than the melting point T ∗

B . Figure 8.6 shows the solubility line versus
T −1, which is a straight line in the case of ideal solubility. For instance, the solubil-
ity line for a solution of naphthalene in benzene is well described by relation (8.51).
This relation also allows to draw the following general conclusions.

1. Solubility increases with increasing temperature.
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Fig. 8.6 Line of ideal
solubility of the solid B in a
liquid solvent. T ∗

B denotes the
melting point of the pure
substance

2. If two solids have similar melting points then the more soluble one is the solid
with a smaller enthalpy of melting.

3. If two solids have similar enthalpy of melting then the more soluble one is the
solid with a lower melting point.

8.2.3 Simple Eutectic

A distinction between the line of freezing, given by (8.45), and the line of solubility,
given by (8.51), is a matter of convention, since they are both expressed by the
same formula. Usually we talk about freezing when the solid phase that forms is
composed of the solvent molecules, and about solubility when it is composed of the
solute molecules.

We consider now two substances: A and B , which are completely miscible in the
liquid phase and completely non-miscible in the solid phase, which means that the
solution crystallizes in the form of pure substances. Such a mixture is called a simple
eutectic. As we have already seen, addition of a small amount of the substance B to
the solvent A causes depression of the freezing point in relation to the freezing point
of the pure solvent, T ∗

A . Similarly, addition of the substance A to the pure substance
B shifts the freezing point below T ∗

B . Thus, depending on the composition, a liquid
solution can be in equilibrium with the solid phase of either A or B .

Suppose that the liquid phase is an ideal solution. Then the composition of the
liquid phase in equilibrium with the solid phase of the pure A is given by relation
(8.45) and an analogous relation holds for the component B . Therefore, we can draw
two lines of the liquid–solid equilibrium in the xAT plane (see Fig. 8.7):

lnxA = �h∗
A

R

(
1

T ∗
A

− 1

T

)
, (8.52)

lnxB = �h∗
B

R

(
1

T ∗
B

− 1

T

)
, (8.53)

where T ∗
A and T ∗

B denote the freezing points of the pure A and B , respectively,
and xB = 1 − xA. The intersection of these lines is called the eutectic point. It is
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Fig. 8.7 Phase diagram of a simple eutectic. The freezing lines meet at the eutectic point, of
the composition xe and temperature Te . Meaning of symbols: ‘liquid + A(s)’ and ‘liquid + B(s)’
refer to the liquid–solid two-phase regions, and ‘A(s) + B(s)’ refers to the coexistence of pure
solid phases A and B . The point on the dashed line represents a mixture composition in the
‘liquid + A(s)’ region, at the given temperature T = T0. For instance, a mixture of the compo-
sition x0 separates into the solid phase A and the liquid phase whose composition corresponds to
the intersection of the dashed line with the freezing line

defined by the composition xA = xe and temperature T = Te. Note that only the
parts of the lines above the eutectic point have physical meaning, because Te is the
lowest temperature at which the solution can exist in the liquid phase. Below the line
T = Te, the solid phase of pure A coexists with the solid phase of pure B , because
their molecules do not form a common crystalline structure. At the temperature Te ,
three phases are in equilibrium with one another, i.e., the liquid solution, of the
composition xe, and the solid phases A and B .

At the eutectic composition xe , the liquid solution crystallizes like a pure sub-
stance, i.e., its temperature remains constant and equal to Te until the whole liq-
uid changes into an inhomogeneous mixture of small crystals of pure substances A

and B , whose average composition amounts to xe. If the initial composition of the
solution differs from xe then, depending on the composition, either the solid phase
A or B starts to separate from the solution at a certain temperature. Let us consider
for instance, the composition x0 > xe, i.e., a solution richer in the component A,
which is shown in Fig. 8.7. At a certain temperature below T ∗

A , the solid A begins
to separate from the solution. Further cooling of the solution causes more solid A

to separate, while the liquid phase becomes poorer in the component A, i.e., its
composition approaches the eutectic point from the right-hand side. At the given
temperature T0, the composition of the solution in equilibrium with the solid A is
determined by the intersection of the line T = T0 with the freezing line of the solu-
tion. When the composition reaches the eutectic point, the solution crystallizes like
a pure substance at the temperature Te. If the initial composition of the solution is
smaller than xe we observe an analogous behaviour, but then the solid B begins to
separate from the solution at a certain temperature below T ∗

B .
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Fig. 8.8 In the state of
osmotic equilibrium, there is
a pressure difference Π

between the pure solvent and
the solution, called the
osmotic pressure

8.3 Osmotic Equilibrium

Substances that form ideal mixtures can mix in arbitrary proportion. The phe-
nomenon of separation into distinct liquid phases do not occur in this case. However,
in some situations, mixing of different components is impossible or difficult because
of internal constraints imposed on the system.

Imagine a vessel divided by a semi-permeable membrane. One part of the vessel
is occupied by the pure substance A in the liquid phase, whereas in the second part,
the same substance is a solvent in a solution with the substance B (see Fig. 8.8).
The membrane is permeable to the solvent molecules and impermeable to the solute
molecules. Such a phenomenon is called osmosis. In this case, we consider only the
equilibrium condition with respect to the flow of the component A, i.e.,

μ∗
A(T ,p) = μA(T ,p + Π,xA), (8.54)

where p + Π denotes the pressure in the solution. On the right-hand side of (8.54),
we substitute the expression for the chemical potential of a component in the ideal
solution, hence

μ∗
A(T ,p) = μ∗

A(T ,p + Π) + RT lnxA. (8.55)

As we can see, the pressure in both parts of the vessel is the same only if xA = 1.
When xA < 1 there exists a pressure difference Π called the osmotic pressure. We
can simplify expression (8.55), expanding μ∗

A(T ,p + Π) around p. For a small
osmotic pressure, it leads to the following relation:

Π = −RT lnxA

v∗
A

, (8.56)

where v∗
A is the molar volume of pure solvent at the pressure p. If the solution is

dilute then lnxA = ln(1 − xB) ≈ −xB . Moreover, xB ≈ nB/nA and v∗
A ≈ V/nA,

where V is the total volume occupied by the solution. Then we can express the
osmotic pressure as follows:

Π = RT nB

V
. (8.57)
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Note that the osmotic pressure depends only on the amount of the substance dis-
solved, and not on the nature of that substance. Measurement of the osmotic pres-
sure allows to determine the molar mass of the solute if we know its mass in the
solution.

8.4 Colligative Properties

We know already that some properties of solutions do not depend on the nature of
the solute but only on its amount in the solution. Such properties of solutions are
referred to as colligative properties. Here we recall the phenomena in which the
colligative properties are manifested.

8.4.1 Vapour Pressure Depression

Addition of a small amount of the non-volatile substance B to the liquid solvent A

causes depression of the vapour pressure in equilibrium with the liquid phase. From
Raoult’s law, it follows that

p ≈ pA = p∗
AxA = p∗

A − p∗
AxB. (8.58)

In the case of dilute solutions, the depression of the vapour pressure below its value
for the pure solvent depends only on the mole number of the substance B , i.e.,

p − p∗
A ≈ −p∗

A

nB

nA

. (8.59)

8.4.2 Boiling Point Elevation

In Sect. 8.1.5, we showed that addition of a small amount of the non-volatile sub-
stance B to a liquid solvent causes elevation of the boiling point of the solution in
relation to the boiling point of the pure solvent, T ∗

A . The boiling point elevation is
given by the following formula:

�Tb = KbmB, (8.60)

where the ebullioscopic constant Kb characterizes the solvent, hence, �Tb depends
only on the mole number of the solute.

8.4.3 Freezing Point Depression

In Sect. 8.2.1, we considered a solution of a small amount of the substance B dis-
solved in the liquid solvent A, assuming that A and B do not form a solid solution.
We showed that such a solution freezes at a lower temperature than the freezing
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point of the pure solvent, T ∗
A . The depression of the freezing point is given by the

following formula:

�Tf = −Kf mB, (8.61)

where the cryoscopic constant Kf characterizes the solvent, hence, �Tf depends
only on the mole number of the solute.

8.4.4 Osmotic Pressure

In Sect. 8.3, we studied equilibrium between the pure solvent A and the solvent A

in a solution with a small amount of the substance B , in the presence of a membrane
permeable only to the solvent molecules. The pressure difference between the pure
solvent and the solution:

Π = RT nB

V
, (8.62)

depends only on the mole number of the solute, but not on its nature.

8.5 Exercises

8.1 At a given temperature, the vapour pressure above the liquid solution A + B

amounts to p = (p∗
A +p∗

B)/2. Using Raoult’s law, find the composition of the liquid
and vapour at this pressure.

8.2 Two liquids, A and B , form an ideal solution at the external pressure p. Using
Raoult’s law and the Clausius–Clapeyron equation, determine the liquid and vapour
composition lines in the form of a relation between the composition and tempera-
ture. Assume that the enthalpy of melting of both components does not depend on
temperature.

8.3 The boiling point of pure liquids A and B at the pressure p = 1 bar amounts
to T ∗

A = 340 K and T ∗
B = 360 K, respectively. The enthalpy of evaporation amounts

to �h∗
A = 20 kJ/mol and �h∗

B = 25 kJ/mol, respectively. Find the pressure of the
liquid–vapour equilibrium for pure substances A and B at the temperature T =
350 K. Then find the liquid and vapour composition for the solution A + B whose
boiling point at the pressure of 1 bar amounts to 350 K. Assume that A and B form
an ideal solution.

8.4 For very dilute solutions, Henry’s law:

pB = kBxB,

holds, where pB is the partial pressure of the solute B in the gaseous phase, and
xB is its molar fraction in the solution. In particular, Henry’s law applies to gases
dissolved in liquids. For instance, the concentration of oxygen in water, necessary
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to sustain life, amounts to 4 mg L−1, and the Henry constant for oxygen in water at
the temperature of 25 °C amounts to 3.3 × 107 torr. Calculate the partial pressure of
oxygen above the surface of water needed to maintain the required molar concen-
tration of oxygen in water. By comparison, the partial pressure of oxygen above sea
surface amounts to 160 torr.

8.5 The gas B and liquid A form an ideal dilute solution, where A is treated as a
non-volatile substance. Assuming A to be water and B to be oxygen, calculate the
ratio of the volume that oxygen dissolved in water would occupy in the gaseous
state to the volume of water, at the temperature of 25 °C. Assume also that the
concentration of oxygen in water is small and the gas above the solution is ideal.

8.6 The mass m of polyethylglicol, of the molar mass M , is dissolved in water of
the volume V . Then the solution is connected to a narrow capillary filled with pure
water through a semi-permeable membrane, impermeable to the polymer. Assum-
ing dilute solution, find the elevation of water level in the capillary, h, at a given
temperature T .

8.7 The boiling point of pure benzene at atmospheric pressure amounts to 353.2 K
and its ebullioscopic constant Kb = 2.53 K kg mol−1. When a small amount of a
non-volatile substance B , of the molar mass MB = 64 g mol−1, is added to ben-
zene, a solution of the mass m = 100 g forms. What is the mass of the non-volatile
component if the boiling point of the solution amounts to 355 K?

8.8 After the addition of 24 g of ethanol (C2H5OH) to 1 kg of water the freezing
point of the solution amounts to −0.97 °C. Calculate the cryoscopic constant of
water.

8.9 The cryoscopic constant of acetic acid (CH3COOH) amounts to Kf =
3.70 K kg mol−1. What amount of acetone ((CH3)2CO) should be dissolved in
1.5 kg of acetic acid, to lower the freezing point of the solution by 0.5 K below
the freezing point of the pure solvent?

8.10 Naphthalene melts at the temperature of 352.3 K, and its enthalpy of melting
amounts to 19.0 kJ mol−1. Calculate the solubility of naphthalene in benzene, i.e.,
the molar fraction at which naphthalene in the solution coexists with the solid phase,
at the temperature of 298 K. Assume that: (1) the solid precipitated from the solution
is pure naphthalene, (2) the solution of naphthalene in benzene is an ideal solution,
(3) the enthalpy of melting of naphthalene does not depend on temperature.

8.11 A mixture of substances A and B forms a simple eutectic at the composition
xe = 0.4. The temperature of the eutectic point, Te , equals 90 % of the freezing
point of pure A, T ∗

A , and 84 % of the freezing point of pure B , T ∗
B . Calculate the

ratio of the enthalpy of melting of pure components, �h∗
A/�h∗

B , assuming that A

and B form an ideal solution in the liquid phase and that the enthalpy of melting of
pure components does not depend on temperature.



Chapter 9
Phase Equilibrium in Real Mixtures

There are many mixtures to which predictions of the ideal solution model, discussed
in the previous chapter, do not apply. For instance, the liquid and vapour composi-
tion lines do not have to be monotonic. They may have a minimum or maximum at
which liquid and vapour have the same composition. A mixture of such a compo-
sition is called an azeotrope. Another phenomenon, not observed in ideal mixtures,
is partial miscibility of components. This means that there exists a certain range of
composition in which the components do not form a single liquid or solid phase.
A mixture whose composition is in this range separates into two liquid or solid
phases of different composition. In such a case, the mixture is said to have a misci-
bility gap. As in the previous chapter, we consider only two-component systems.

9.1 Liquid–Vapour Equilibrium

9.1.1 Deviations From Raoult’s Law

In real solutions, Raoult’s law is satisfied for any composition only if similar liquids
are mixed. For other mixtures, the closer to unity the molar fraction of the solvent,
xA, is, the better Raoult’s law is satisfied. In the case of the solute, denoted B , we
learned in Sect. 8.1.6 that in a dilute solution it satisfies Henry’s law. Thus, we have

pA = p∗
AxA, (9.1)

pB = kBxB, (9.2)

for xB → 0 (xA → 1), where p∗
A is the vapour pressure of the pure solvent in liquid–

vapour equilibrium, and kB is the Henry constant of the solute B in the solvent A.
Interchanging A with B , we get

pB = p∗
BxB, (9.3)

pA = kAxA, (9.4)
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Fig. 9.1 Schematic plot of
the partial vapour pressure of
the component A vs its molar
fraction in the solution.
Raoult’s law (9.1) is satisfied
in the limit xA → 1, whereas
in the limit xA → 0, Henry’s
law (9.4) holds

for xA → 0 (xB → 1). The dependence of the partial pressure pA on xA is shown
schematically in Fig. 9.1. Raoult’s and Henry’s laws concern the slope of the func-
tion pA(xA) at xA = 1 and xA = 0, respectively. Beyond these two limits, pA is not
a linear function of xA, in general. A similar drawing can be made for the compo-
nent B .

If there are no specific interactions between components, such as hydrogen bonds
for instance, then positive deviations from Raoult’s law are usually observed (see
Fig. 9.2a). It means that molecules exhibit a stronger tendency to escape from the
liquid phase than in the case of the ideal solution. The case of a negative deviation
from Raoult’s law is shown in Fig. 9.2b. An example of such a behaviour is the
mixture of acetone and chloroform.

9.1.2 Simple Solutions

To take into account deviations from Raoult’s law, we express the chemical potential
of a component in its general form (see (7.120)), e.g.,

μA = μ∗
A + RT ln(xAγA), (9.5)

Fig. 9.2 Partial vapour pressure of the components and the total pressure, for a solution showing:
(a) positive deviations from Raoult’s law, (b) negative deviations from Raoult’s law. The dashed
lines correspond to the ideal solution
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where μ∗
A is the chemical potential of the pure substance, γA is the activity coef-

ficient and xA is the molar fraction of the component A in the solution. A similar
relation holds for the component B . From the definition of the activity coefficient, it
follows that γA = 1 for the pure substance, and in the case of ideal solutions, γA = 1
for any composition. In general, γA is a function of temperature, pressure and com-
position of the solution. The activity coefficient simply shows how the behaviour of
a given component in a real solution deviates from the behaviour of that component
in a hypothetical ideal solution.

To derive a relation between the partial pressure pA and the composition of the
solution, we need to repeat the reasoning presented in Sect. 8.1.1. However, it is
easy to notice that we only need to replace the molar fraction xA with the product
γAxA in the formula for the chemical potential. The same replacement needs to be
done in the expression for pA, and we proceed analogously with the component B .
In this way, we obtain a generalized form of Raoult’s law:1

pA = p∗
AγAxA, (9.6)

pB = p∗
BγBxB. (9.7)

The total vapour pressure above the solution amounts to p = pA + pB , with pA =
pyA and pB = pyB , where yA and yB are the molar fractions of the components in
the gaseous phase. If we know the composition of both the solution and vapour we
can determine the activity coefficients, measuring the vapour pressure.

We consider now a model of a real solution, called the simple solution, which
allows us to express the activity coefficients in terms of a single parameter. We recall
first the Gibbs–Duhem equation at constant temperature and pressure (see (7.23)):

xAdμA + xBdμB = 0. (9.8)

Since it is satisfied by the chemical potentials in the ideal solution, it must be also
satisfied by the excess chemical potentials (see (7.137)), i.e.,

xAdμE
A + xBdμE

B = 0, (9.9)

where μE
A = RT lnγA and μE

B = RT lnγB . As we know, μA has the same form
as in the ideal solution when xA → 1. Then μE

A → 0 and also xB = 1 − xA → 0.
Therefore, it is convenient to treat μE

A as a function of xB and, analogously, μE
B is

treated as a function of xA. Since dxB = −dxA, we obtain the following equation:

−xA

(
∂μE

A

∂xB

)
T ,p

+ xB

(
∂μE

B

∂xA

)
T ,p

= 0. (9.10)

The simplest non-trivial solution of Eq. (9.10) is given by the functions

μE
A = gABx2

B, (9.11)

μE
B = gABx2

A, (9.12)

1As before, we treat the vapour as an ideal gas. In the general case, the pressure should replaced
by the fugacity.
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where gAB is a certain function of temperature and pressure. Then the activity coef-
ficients are given by the following expressions:

γA = exp
(
gABx2

B/RT
)
, (9.13)

γB = exp
(
gABx2

A/RT
)
. (9.14)

Substituting (9.11) and (9.12) into the expression for the excess molar Gibbs free
energy (see (7.140)), i.e.,

gE = GE

n
= xAμE

A + xBμE
B, (9.15)

we obtain the following form of gE for the simple solution:

gE = gABxAxB(xA + xB) = gABxAxB. (9.16)

We can see that the excess part of the Gibbs free energy is related to interactions
between components of the solution.

Depending on the sign of gE we talk about positive or negative deviations from
the ideal behaviour. For the simple solution, gE has the same sign as the coeffi-
cient gAB . In the case of positive deviations (gE > 0), both activity coefficients are
greater than unity, and the partial vapour pressures lie above the straight lines pre-
dicted by Raoult’s law, as shown in Fig. 9.2a. In the case of negative deviations
(gE < 0), γA < 1 and γB < 1, and the partial pressures lie below the values pre-
dicted by Raoult’s law (see Fig. 9.2b). In both cases, the total vapour pressure above
the solution deviates in the same direction as the partial pressures.

9.1.3 Zeotropic and Azeotropic Mixtures

The total vapour pressure above the solution is a sum of the partial pressures:

p = pA + pB = p∗
AγAxA + p∗

BγBxB. (9.17)

The expressions for the liquid and vapour composition lines are derived in the same
way as in the case of ideal solutions. Note that they follow directly from relations
(8.13) and (8.15) if the products p∗

AγA and p∗
BγB are substituted for p∗

A and p∗
B ,

respectively, hence

p(l, xA) = p∗
BγB + (

p∗
AγA − p∗

BγB

)
xA, (9.18)

p(g, xA) = p∗
AγAp∗

BγB

p∗
AγA + (p∗

BγB − p∗
AγA)xA

. (9.19)

It should be emphasized, however, that now the right-hand side of relations (9.18)
and (9.19) also depends on the pressure p through the activity coefficients. The
liquid and vapour composition lines are also called the bubble point curve and dew
point curve, respectively. At constant temperature, they are the bubble point and
dew point isotherms, and at constant pressure, they are the bubble point and dew
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point isobars. In a pure substance, the bubble point and dew point are the same and
are referred to as the boiling point. In respect of shape of the bubble point isotherm,
mixtures are divided into zeotropic and azeotropic ones. Below we present equations
for the bubble point and dew point isotherms and isobars. Their derivation is given
at the end of this section.

Bubble point isotherm (
∂p

∂xA

)
T

= (yA − xA)gxx

yA�vA + yB�vB

. (9.20)

Dew point isotherm (
∂p

∂yA

)
T

= (yA − xA)gyy

xA�vA + xB�vB

. (9.21)

Bubble point isobar (
∂T

∂xA

)
p

= − (yA − xA)gxx

yA�sA + yB�sB
. (9.22)

Dew point isobar (
∂T

∂yA

)
p

= − (yA − xA)gyy

xA�sA + xB�sB
. (9.23)

The following symbols have been used: xA = 1 − xB (liquid composition), yA =
1 − yB (vapour composition), �vA, �vB (change in the partial molar volume at
the liquid–vapour transition), �sA, �sB (change in the partial molar entropy at the
liquid–vapour transition),

gxx =
(

∂2g

∂x2
A

)
T ,p

, (9.24)

gyy =
(

∂2g

∂y2
A

)
T ,p

, (9.25)

where g denotes the molar Gibbs free energy for the liquid or gaseous phase. At
the liquid–vapour transition, �vA, �vB , �sA, and �sB are positive. Moreover, the
condition of intrinsic stability must be satisfied (see Example 7.1), i.e.,(

∂2g

∂x2
A

)
T ,p

> 0. (9.26)

Corollary 9.1 The bubble point and dew point isotherms are inclined according
to the sign of the difference between the vapour and liquid composition, yA − xA,
whereas the bubble point and dew point isobars are inclined in the opposite direc-
tion.
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Fig. 9.3 Bubble point isotherm (upper curve) and the dew point isotherm (lower curve) for a
zeotropic mixture, in the case of: (a) positive deviations from Raoult’s law, (b) negative deviations
from Raoult’s law

Fig. 9.4 Bubble point isobar
(lower curve) and dew point
isobar (upper curve) for a
zeotropic mixture. The more
volatile component A has the
lower boiling point T ∗

A

9.1.4 Zeotropic Mixtures

In a zeotropic mixture, the pressure on the bubble point and due point isotherms
increases monotonically with the molar fraction of the more volatile component,
which we assume to be the component A (p∗

A > p∗
B ). Therefore, we infer from re-

lations (9.20) and (9.21) that yA > xA, i.e., the vapour is richer in the more volatile
component than the liquid. If γA and γB are greater than unity then gE > 0 and
the bubble point isotherm lies above the straight line predicted by Raoult’s law
(Fig. 9.3a). If γA and γB are smaller than unity then gE < 0 and the bubble point
isotherm is below that straight line (Fig. 9.3b).

The bubble point and dew point isobars are shown in Fig. 9.4. In this case there is
no such a simple relation between the sign of deviation from Raoult’s law and shape
of the bubble point isobar as in the case of the isotherm. Therefore, only one diagram
is shown in Fig. 9.4. According to relations (9.22) and (9.23), the temperature on
the bubble point and dew point isobars decreases monotonically with an increasing
molar fraction of the component A.
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Fig. 9.5 Bubble point and dew point isotherms for a mixture with an azeotropic point: (a) a posi-
tive azeotrope, (b) a negative azeotrope

9.1.5 Azeotropic Mixtures

In the case of large deviation from Raoult’s law, the bubble point isotherm has an
extremum called the azeotropic point. From Eqs. (9.20) and (9.21), we infer that at
the azeotropic point, the vapour composition yA is equal to the liquid composition
xA; the dew point isotherm also have an extremum at that point. A mixture with a
composition of the azeotropic point is called an azeotropic mixture or an azeotrope.
Azeotrops boil, as do pure liquids, at constant temperature and pressure. A positive
azeotrope corresponds to the maximum on the bubble point isotherm and a negative
azeotrope corresponds to the minimum on that isotherm (Fig. 9.5). The bubble point
and dew point isobars for a mixture with an azeotropic point are shown in Fig. 9.6.
Contrary to the bubble point isotherms, a positive azeotrope has a minimum on the
bubble point isobar and a negative azeotrope has a maximum (cf. (9.22) and (9.23)).
A well known mixture that forms a positive azeotrope is a mixture of ethanol and
water. At atmospheric pressure, the azeotrope boils at 78.2 °C, whereas the boiling
points of the components amount to 100 °C (water) and 78.4 °C (ethanol). The
azeotrope composition is equal to 95.63 % (by weight) of ethanol.

Distillation Process In the distillation process, the mixture is heated at constant
pressure. The liquid begins to boil when the vapour pressure becomes equal to the
external pressure. Distillation of a zeotropic mixture proceeds in a similar way as
distillation of an ideal mixture (see Fig. 8.3 in Sect. 8.1.1), which means that the
components can be separated to an arbitrary accuracy.

In the case of an azeotropic mixture, components cannot be completely separated
by means of distillation. This is because in the distillation process, one makes use of
the difference between the liquid and vapour composition in liquid–vapour equilib-
rium. Since this difference disappears at the azeotropic point, the components can
be separated only up to that point by distillation. Let us consider, for instance, dis-
tillation of a positive azeotrope shown in Fig. 9.6a. If the initial composition of the
liquid is to the left of the azeotropic point then, due to distillation, we remove vapour
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Fig. 9.6 Bubble point and dew point isobars for a mixture with an azeotropic point: (a) a positive
azeotrope, (b) a negative azeotrope

richer and richer in the component A, whereas the liquid remaining in the vessel be-
comes increasingly rich in the component B with a higher boiling point. When the
azeotropic point is reached the liquid and vapour have the same composition and the
components cannot be further separated by distillation. If the initial composition is
to the right of the azeotropic point then a liquid richer and richer in the component A

stays in the vessel, whereas the vapour composition approaches the azeotropic point.
A similar reasoning can be used for a negative azeotrope (Fig. 9.6b). In this case, we
have an opposite situation, i.e., the vapour removed from the system becomes richer
and richer in the component B or A, depending on the initial composition, whereas
the composition of the liquid staying in the vessel approaches the azeotropic point.

9.1.6 Derivation of Equations for the Bubble Point and Dew Point
Isotherms and Isobars

We derive here relations (9.20)–(9.23). In the liquid–vapour equilibrium, we have

μA(l) = μA(g), (9.27)

μB(l) = μB(g). (9.28)

We are interested in such changes of the state parameters of the system which do
not influence the liquid–vapour equilibrium. For infinitesimal changes of the param-
eters, the following equations must be satisfied:

dμA(l) = dμA(g), (9.29)

dμB(l) = dμB(g), (9.30)

which lead to differential equations analogous to the Clapeyron equation for a pure
substance.
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Using (7.70), we obtain

dμA = −sAdT + vAdp +
(

∂μA

∂xA

)
T ,p,

dxA, (9.31)

dμB = −sBdT + vBdp +
(

∂μB

∂xA

)
T ,p,

dxA, (9.32)

where vA, vB , sA and sB denote the partial molar volume and partial molar entropy
of the components, respectively. The derivative of the chemical potentials with re-
spect to xA can be expressed in terms of the second derivative of the molar Gibbs
free energy g. Since (

∂g

∂xA

)
T ,p

= μA − μB (9.33)

(see (7.16)) we have (
∂2g

∂x2
A

)
T ,p

=
(

∂μA

∂xA

)
T ,p

−
(

∂μB

∂xA

)
T ,p

. (9.34)

The chemical potentials must satisfy the Gibbs–Duhem equation at constant T and
p (see (7.23)): xAdμA + xBdμB = 0, hence

xA

(
∂μA

∂xA

)
T ,p

+ xB

(
∂μB

∂xA

)
T ,p

= 0. (9.35)

Form Eqs. (9.34) and (9.35), it follows that
(

∂μA

∂xA

)
T ,p

= xB

(
∂2g

∂x2
A

)
T ,p

, (9.36)

(
∂μB

∂xA

)
T ,p

= −xA

(
∂2g

∂x2
A

)
T ,p

. (9.37)

Substituting (9.36) into (9.31), and (9.37) into (9.32), we can write Eqs. (9.29) and
(9.30) as follows:

−sl
AdT + vl

Adp + gxxxBdxA = −s
g
AdT + v

g
Adp + gyyyBdyA, (9.38)

−sl
BdT + vl

Bdp − gxxxAdxA = −s
g
BdT + v

g
Bdp − gyyyAdyA. (9.39)

Now xA corresponds to the liquid phase (l) and yA corresponds to the gaseous phase
(g), hence, gxx and gyy denote the values of ∂2g/∂x2

A in the liquid and gaseous
phases, respectively. Finally, we obtain the following two equations:

−�sAdT + �vAdp − gxxxBdxA + gyyyBdyA = 0, (9.40)

−�sBdT + �vBdp + gxxxAdxA − gyyyAdyA = 0, (9.41)

where �sA = s
g
A − sl

A, �vA = v
g
A − vl

A, and analogously for the component B .
To obtain equations for the isotherms, we put dT = 0 in (9.40) and (9.41). Then we
multiply (9.40) by yA and (9.41) by yB and add up both sides, to eliminate the terms
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with dyA. Using the relations xB = 1 − xA and yB = 1 − yA, we obtain equation
(9.20) for the bubble point isotherm. In an analogous way, we derive equation (9.21)
for the dew point isotherm. To obtain equations (9.22) and (9.23) for the isobars, we
put dp = 0 in (9.40) and (9.41). Then the derivation proceeds identically as for the
isotherms.

9.2 Liquid Solutions with Miscibility Gap

So far we have been assuming that components can mix in any proportion. It is usu-
ally true if the molecules of different components have similar chemical structure.
However, we know very well from everyday experience that some substances, e.g.,
water and oil, do not form a homogeneous liquid. For a wide range of composi-
tion, such a mixture exists in the form of two liquid phases of different content of
each component. Big differences in the chemical structure of molecules can lead
to separation of a solution into two liquid phases. Such a solution is said to have a
miscibility gap. It is a range of composition for which a given solution cannot exist
as a homogeneous liquid.

First, we discuss different types of a miscibility gap and then give thermodynamic
description of this phenomenon based on the simple solution model. In particular,
we show that a miscibility gap can occur only in solutions which exhibit positive
deviation from the ideal behaviour.

9.2.1 Miscibility Curve and Critical Temperatures

The line separating the one-phase region from the two-phase region on a diagram
showing the liquid–liquid equilibrium is called the liquid–liquid miscibility curve.
Such a curve has a critical point or it terminates on a line of liquid–vapour equilib-
rium. Here we consider only the first possibility and the second one is discussed in
Sect. 9.3.

Figure 9.7 presents a typical phase diagram for a solution with a miscibility gap.
Above a certain temperature, called the upper critical solution temperature, T u

cr, the
liquids A and B are completely miscible. Below T u

cr, the mixture exists as a single
liquid phase, either α, rich in the component A, or β , rich in the component B , only
in a certain range of composition. If the mixture composition is in the two-phase
region then, at a given temperature, the phase α with the composition xα

A and the

phase β with the composition x
β
A coexist, and their proportion is determined by the

lever rule. The liquid–vapour coexistence, which occur at higher temperatures, is
not shown in Fig. 9.7.

Let us consider a mixture with the composition xA = xcr at a temperature T <

T u
cr. When the temperature T approaches the critical temperature the composition of

each liquid phase tends to the critical composition, and at the critical temperature it
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Fig. 9.7 Miscibility gap below the temperature T u
cr ; xcr denotes the mixture composition at the

critical point. For T > T u
cr , the liquids A and B form a homogeneous mixture. For T < T u

cr , there
exist two liquid phases: α and β . A mixture whose composition corresponds to the point d separates
into the phases α and β with the composition corresponding to the points a and b, respectively

Fig. 9.8 Miscibility gap with
a lower critical solution
temperature T l

cr. The liquids
A and B form a
homogeneous mixture when
temperature is lower than T l

cr.
For T > T l

cr, two liquid
phases α and β exist

becomes equal to xcr. At the critical point the difference between the phases α and
β disappears, and above the critical point a single liquid phase exists.

It may also happen that two liquids are completely miscible at low temperatures
and a miscibility gap occurs at higher temperatures. Such a situation is shown in
Fig. 9.8. Below the lower critical solution temperature, T l

cr, a mixture of the liquids
A and B is homogeneous independently of its composition, and above T l

cr two liquid
phases α and β exist.

In Sect. 9.2.2, we show that the existence of a lower or upper critical solution
temperature is related to the sign of the excess molar entropy hE . If in the process
of mixing the system absorbs heat, i.e., it is an endothermic process, then hE > 0.
When such a system is heated it is easier for the components to mix, therefore,
the region of complete miscibility occurs at higher temperatures (Fig. 9.7). This is
typical behaviour, characteristic of many systems, e.g., a mixture of methanol and
carbon tetrachloride. In the case of mixtures with a lower critical solution tempera-
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Fig. 9.9 Miscibility gap
bound by a closed curve
possesses an upper and lower
critical solution points. For
temperatures higher than T u

cr
or lower than T l

cr, the
components are completely
miscible. For T l

cr < T < T u
cr ,

two liquid phases α and β

exist

Fig. 9.10 Two separate
miscibility gaps. For
temperatures higher than T u

cr
and lower than T l

cr, the
mixture is completely
miscible. For temperatures
higher than T l

cr or lower than
T u

cr , two liquid phases exist

ture (Fig. 9.8), we have hE < 0, which means that mixing is an exothermic process
(system gives off the heat). Associating liquids exhibit such behaviour, e.g., a mix-
ture of diethylamine with water.

For some systems, the miscibility curve is closed (Fig. 9.9), for instance, a mix-
ture of nicotine and water. In this case, complete miscibility occurs at temperatures
higher than T u

cr or lower than T l
cr. Between the lower and upper critical solution

temperature, the liquid phases α and β exist.
Two critical points can also occur in the case of two separate miscibility gaps:

the upper gap, above the lower critical solution temperature T l
cr, and the lower gap,

below the upper critical solution temperature T u
cr (see Fig. 9.10). Note that then

T l
cr > T u

cr, therefore, the region of complete miscibility occurs between T u
cr and T l

cr.
In this case, hE changes sign when temperature varies between the upper and lower
critical solution temperature.

Finally, it should be emphasized that we have presented only schematic pictures
of miscibility curves. In the next point, we discuss the simple solution model, for
which the molar Gibbs free energy is symmetric with respect to interchange of
components, i.e., g(xA) = g(1 − xA), provided that the chemical potentials of pure
components are equal. In general, μ∗

A �= μ∗
B and experimental curves exhibit some
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asymmetry. Besides, the simple solution is only an approximation of real solutions,
and the excess molar Gibbs free energy used, gE , is symmetric with respect to inter-
change of components. However, a more general form of gE without this symmetry
can also be considered.

9.2.2 Miscibility Gap in Simple Solutions

We are going to show now that the miscibility gap occurs in solutions with posi-
tive deviation from the ideal behaviour. To do this, we consider a simple solution
(see (9.16)), therefore, the molar Gibbs free energy is given by

g = gid + gE, (9.42)

where

gid = μ∗
AxA + μ∗

BxB + RT (xA lnxA + xB lnxB), (9.43)

gE = gABxAxB. (9.44)

The first term in (9.42) refers to the ideal solution and the excess term gE character-
izes deviation from the ideal behaviour, where gAB is a function of temperature and
pressure. As we know, the molar Gibbs free energy of a thermodynamically stable
phase must satisfy the condition of intrinsic stability:(

∂2g

∂x2
A

)
T ,p

> 0. (9.45)

Substituting g given by expressions (9.42)–(9.44) into (9.45), we obtain the follow-
ing condition:

RT

xAxB

− 2gAB(T ,p) > 0. (9.46)

In what follows we assume constant pressure, thus, gAB depends only on temper-
ature. A critical point is such a point in the xAT plane, at which a homogeneous
liquid phase ceases to be stable and the mixture begins to separate into two liquid
phases with different composition. It occurs when condition (9.45) breaks down,
i.e., when (

∂2g

∂x2
A

)
T ,p

= 0. (9.47)

If at a given temperature inequality (9.46) is satisfied for the composition that mini-
mizes the first term, i.e., for xA = 1/2, then it is also satisfied for any xA. Therefore,
the temperature at which condition (9.46) breaks down first, i.e., the critical temper-
ature, must satisfy the equation

4RT − 2gAB(T ) = 0, (9.48)
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and the critical composition (for the simple solution model) is equal to xcr = 1/2.
Note that Eq. (9.48) can have a solution only if gAB(T ) > 0, i.e., in the case of
positive deviation from the ideal behaviour.

It is convenient to introduce the function

a(T ) = gAB(T )

RT
. (9.49)

Then two possibilities follow from (9.46) and (9.48):

1. Complete miscibility of components if a(T ) < 2,
2. Miscibility gap if a(T ) > 2,

and a critical temperature is a solution of the equation a(T ) = 2. Whether it is an
upper or lower critical solution temperature depends on the behaviour of the function
a(T ). If a(T ) decreases monotonically with increasing temperature then complete
miscibility occurs in a high temperature region and a miscibility gap exists in a low
temperature region, as shown in Fig. 9.7. However, if a(T ) increases monotonically
with temperature, then we have the situation presented in Fig. 9.8.

A closed miscibility curve (Fig. 9.9) occurs when the function a(T ) has one max-
imum with amax > 2. Then the equation a(T ) = 2 has two solutions: T = T l

cr and
T = T u

cr, where T l
cr < T u

cr. Since a(T ) < 2 for T > T u
cr or T < T l

cr, these tempera-
ture ranges correspond to complete miscibility of components, whereas in the range
T l

cr < T < T u
cr, in which a(T ) > 2, a miscibility gap exists.

Finally, two separate miscibility gaps (Fig. 9.10) occur when the function a(T )

has one minimum with amin < 2. As in the previous case, the equation a(T ) = 2
has two solutions, but now T u

cr < T l
cr. Then a(T ) < 2 in the range T u

cr < T < T l
cr,

which corresponds to complete miscibility of components, and a(T ) > 2, if T > T l
cr

(upper miscibility gap) or T < T u
cr (lower miscibility gap).

Note that the derivative of a(T ) with respect to temperature is related to the
excess molar enthalpy. From the Gibbs–Helmholtz relation (see (8.29)), we obtain

hE

RT 2
= −

(
∂gE/RT

∂T

)
p,xA

= −
(

∂a

∂T

)
p

xAxB. (9.50)

Thus, the occurrence of a miscibility gap with an upper critical point is related to
hE > 0, since a(T ) is then a decreasing function of T , whereas a miscibility gap
with a lower critical point occurs when hE < 0. If both an upper and lower critical
points occur then hE changes the sign because a(T ) has a minimum or maximum
between the upper and lower critical solution temperature.

Determination of the Miscibility Curve If the phase α, of the composition xα
A,

is in equilibrium with the phase β , of the composition x
β
A, then the molar fractions

must satisfy the equations:

μA

(
xα
A

) = μA

(
x

β
A

)
, (9.51)

μB

(
xα
A

) = μB

(
x

β
A

)
, (9.52)
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where the dependence on T and p has been suppressed for simplicity. Using the
relation

g′(xA) = μA − μB (9.53)

(see (7.16)), we can also express the equations for xα
A and x

β
A in terms of the molar

Gibbs free energy, i.e.,

g′(xα
A

) = g′(xβ
A

)
, (9.54)

where g′ denotes the derivative with respect to xA. The second equation is derived
from the relation g = xAμA + xBμB as follows:

g
(
xα
A

) − g
(
x

β
A

) = xα
Aμα

A + xα
Bμα

B − x
β
Aμ

β
A − x

β
Bμ

β
B

= (
xα
A − x

β
A

)(
μα

A − μα
B

)
, (9.55)

where we have used the equalities: μα
A = μ

β
A, μα

B = μ
β
B , xα

B = 1 − xα
A and x

β
B =

1 − x
β
A. Substituting (9.53) into (9.55), we obtain

g
(
xα
A

) − g
(
x

β
A

) = (
xα
A − x

β
A

)
g′(xα

A

)
. (9.56)

The geometric interpretation of Eqs. (9.54) and (9.56) is simple. The compositions
xα
A and x

β
A are determined by the double tangent line to the curve g = g(xA), which

is shown in Fig. 9.11. The figure presents a schematic graph of the function g(xA),
which in the case of a simple solution is given by expressions (9.42)–(9.44). If the
temperature is such that the components are completely miscible then the function
g(xA) has the shape shown in Fig. 9.11a, i.e., it is everywhere convex, as required
by stability condition (9.45). At the critical temperature, g′′(xcr) = 0, and in the
temperature range in which a miscibility gap occurs, g(xA) has the shape shown in
Fig. 9.11b. Note that in the last figure the function g(xA) contains an unphysical
part for which g′′ < 0. This is because we use a model function, which is only an
approximation to the true molar Gibbs free energy.2

The model function g(xA) can be corrected to become physically acceptable for
all compositions, including the two-phase region x

β
A < xA < xα

A. Since the Gibbs
free energy is an extensive quantity, in the two-phase region we have

G = nαg
(
xα
A

) + nβg
(
x

β
A

)
, (9.57)

where nα and nβ are the mole numbers of the phases α and β , respectively. They
satisfy the lever rule (cf. (8.23))

nα
(
xA − xα

A

) = nβ
(
x

β
A − xA

)
(9.58)

2A similar problem appeared in Sect. 6.7 in relation to the van der Waals equation of state. The
unphysical part of the van der Waals isotherm corresponds to negative isothermal compressibility,
i.e., it does not satisfy the condition of mechanical stability.
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Fig. 9.11 Schematic graph of the molar Gibbs free energy vs. composition, for the simple solution
model, at two temperatures. In (a) the components are completely miscible, and in (b) a miscibility
gap exists in the range of composition x

β
A < xA < xα

A. The compositions of the coexisting phases
correspond to the tangent points of the curve g = g(xA) with the double tangent line. In a real
system, g(xA) is a linear function of xA in the two-phase region. To mimic this in our model
system, we form a convex envelop of the model function g(xA), as shown in (b)

and the condition nα + nβ = n, where n is the total mole number of the mixture.
From the lever rule, we determine the ratio

nα

n
= xA − x

β
A

xα
A − x

β
A

. (9.59)

Dividing G by n and using (9.57) and (9.59), we obtain the function g(xA) for the
two-phase region:

g(xA) = g
(
x

β
A

) + [
g
(
xα
A

) − g
(
x

β
A

)]xA − x
β
A

xα
A − x

β
A

. (9.60)

It is a linear function which satisfies conditions (9.54) and (9.56). In Fig. 9.11b, it is
represented by the double tangent to the model function g(xA) at the compositions
xα
A and x

β
A, for which the phases α and β coexist. Replacing the part of the model

function between xα
A and x

β
A with the linear function, we form a convex envelop of

g(xA). This construction has a similar meaning to the Maxwell construction for the
van der Waals isotherms (see Sect. 6.7.1).

9.3 Liquid–Vapour Equilibrium in Presence of Miscibility Gap

In the previous section, we focused our attention on the liquid–liquid equilibrium in
solutions with a miscibility gap. Here we take into account also the liquid–vapour
equilibrium. There are two possible situations: (1) the system has an upper critical
point, as in Fig. 9.7 or Fig. 9.9, thus, only a single liquid phase exists before the
solution reaches the bubble point isotherm, (2) the system does not possess an upper
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Fig. 9.12 (a) Phase diagram of a positive azeotrope with a miscibility gap in the liquid phase and
the upper critical point. (b) Phase diagram of a heteroazeotrope. The azeotropic point occurs inside
the miscibility gap. The horizontal segment at T = T3 represents coexistence of three phases: the
liquids α and β and the gaseous phase, whose compositions are represented by the points a, b

and c, respectively

critical point because the liquid–liquid two-phase region extends right to the liquid–
vapour one.

First, we consider case (1). We have shown (see Sect. 9.2.2), that a miscibility
gap can exist only if the deviation from the ideal solution behaviour is positive. For
this reason, above the temperature T u

cr a positive azeotrope often forms, i.e., with
a minimum on the bubble point isobar (Fig. 9.6a), which is also related to positive
deviation from the ideal behaviour. This case is shown in Fig. 9.12a. In case (2),
both liquids begin to boil before the mixture becomes completely miscible. The
most common mixture of this type is the heteroazeotrope, whose phase diagram
is shown in Fig. 9.12b. Three single-phase regions exist here: the liquids α and β

and the vapour, which are separated by two-phase regions. Below the temperature
T3 a miscibility gap exists. Above T3, the vapour can coexist with either the liquid
α or β , depending on the mixture composition. At T = T3, three phases coexist:
the liquids α and β and the vapour. Their compositions are given by the points a,
b and c, respectively, provided that b < xA < a. Thus, the segment ba represents
the three-phase region. The temperature T3 is the lowest temperature at which the
gaseous phase can exist. A mixture whose composition is equal to c separates into
two liquid phases at a temperature lower than T3, and at T3 it boils like an ordinary
azeotrope, i.e., the overall liquid composition is equal to the vapour composition.
For this composition only, both liquids change simultaneously into vapour at con-
stant temperature. For a composition in the miscibility gap but different from c, the
liquids begin to boil at T3 and the temperature does not change until one of them
disappears. Then only one of the liquids remains in equilibrium with the gaseous
phase.

Another phase diagram with a miscibility gap is shown in Fig. 9.13a. This type
of a mixture is called the heterozeotropic mixture. As in the case of an ordinary
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Fig. 9.13 (a) Phase diagram of a heterozeotropic mixture. The miscibility gap extends right to
the boiling point isobar of a zeotropic mixture, i.e., the liquid and vapour compositions are always
different. (b) Phase diagram of a homoazeotrope. The miscibility gap extends right to the boiling
point isobar of a mixture with the azeotropic point in the region of the liquid α. In both figures,
T3 is the temperature of coexistence of the liquids α and β and the vapour, whose compositions
correspond to the points a, b and c, respectively.

zeotropic mixture, the boiling point and dew point isobars do not meet at any point.
At the temperature T3, three phases can coexist: the liquids α and β and the vapour,
whose compositions correspond to the points a, b and c, respectively. T3 lies be-
tween the boiling points of pure substances. For an overall composition of the mix-
ture between the points b and a, both liquids boil at constant temperature T3 until
the phase α disappears from the system. Then only the liquid β and vapour remains
in equilibrium. If the overall mixture composition is between the points a and c,
only the liquid α begins to boil and it boils until the boiling point reaches the value
T3, at which the liquid β also appears. Then the liquid–vapour transition proceeds at
T = T3 until the liquid α disappears from the system and only the liquid β remains
in equilibrium with the vapour.

Figure 9.13b shows another system with a miscibility gap without an upper
critical point. The parts of the bubble point and dew point isobars that bound
the liquid α-vapour two-phase region have the shape characteristic of a positive
azeotrope. This type of a mixture is called the homoazeotrope. The temperature of
the azeotropic point lies below the temperature T3 at which the liquid phases can
simultaneously coexist with the vapour.

9.4 Liquid–Solid Equilibrium and Solid Solutions

In Sect. 8.2.3, we presented the phase diagram of a simple eutectic (Fig. 8.7). It
was then assumed that the liquid solution is ideal and that components are com-
pletely immiscible in the solid phase. If, however, components can mix, completely
or partially, also in the solid phase then the mixture is called a solid solution. The in-
fluence of pressure on phase equilibrium of condensed phases is much smaller than
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Fig. 9.14 Solid solution with
monotonic dependence of the
melting point on composition;
T ∗

A and T ∗
B denote the melting

points of pure substances.
The freezing point curve
(upper line) and the melting
point curve (lower line)
bound the liquid–solid
two-phase region. A few steps
in the process of fractional
crystallization (dashed line)
are shown

in the case of liquid–vapour equilibrium. Therefore, we can assume, for simplicity,
that the pressure is equal to the standard value p0. The types of phase diagram for
solid solutions to a great extend correspond to those discussed above in the case of
liquid–vapour and liquid–liquid equilibrium. Here we present only some of them.

If components can mix in any proportion both in the liquid and solid phase then
the simplest phase diagram, shown in Fig. 9.14, is very similar to the phase diagram
of a zeotropic mixture at constant pressure (cf. Fig. 9.4). The melting point of a
solid solution is a monotonic function of composition. The upper line in Fig. 9.14 is
called the freezing point curve and the lower line is called the melting point curve.3

In between, the liquid–solid two-phase region extends. If at a given temperature the
overall composition of a mixture is in the two-phase region then the liquid and solid
phases are in equilibrium. The compositions of the coexisting phases are determined
by the intersection of the T = const line with the melting point and freezing point
curves. The solid phase is richer in the component with a higher melting point (com-
ponent B). This property is used in the process of fractional crystallization, in which
components of a solid solution can be separated from each other (Fig. 9.14). When
a liquid with the initial composition a1 freezes a solid phase with the composition
a2 < a1 separates from it. Then the solid is removed from the system and changed
into liquid again. The liquid has the same composition a2 and when it freezes a
solid with the composition a3 < a2 separates from it. By repeating this process,
we can obtain an almost pure solid phase of the substance B . Phase diagrams of
many metallic alloys, e.g., copper–nickel, cobalt–nickel or gold–silver, are of the
type shown in Fig. 9.14.

Some solid solutions exhibit a minimum on the melting point curve, e.g., copper–
manganese, copper–gold, cobalt–manganese. Their phase diagrams are very similar
in shape to the phase diagram of a positive azeotrope (cf. Fig. 9.6a). The counterpart
of a negative azeotrope (Fig. 9.6b), i.e., with a maximum on the melting point curve,
is not very common. In the case of large positive deviation from the ideal behaviour,
a miscibility gap in the solid phase region appears. Such a situation is shown in

3In the literature, also the terms liquidus and solidus are used, respectively.
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Fig. 9.15 (a) Solid solution with a miscibility gap below the critical temperature Tcr. (b) Solid
solution of the eutectic type. Unlike the simple eutectic, the solid phases are not pure substances.
A liquid with the eutectic composition xe freezes at constant temperature Te , and the solid phases
α and β separate from the solution

Fig. 9.15a. In the high temperature region, the liquid phase is in equilibrium with a
homogeneous solid phase and the melting point curve has a minimum. The homoge-
neous solid phase is stable above the critical temperature Tcr. For T < Tcr, the solid
phases α and β can coexist. At low temperatures, the solid phases become almost
pure crystals.

A solid solution that forms an eutectic system is shown in Fig. 9.15b. In this case,
the phase diagram resembles that of the heteroazeotrope (cf. Fig. 9.12b). Unlike the
simple eutectic (Fig. 8.7), the solid phases are not pure crystals of A and B , but
solid solutions. At the eutectic temperature Te, the solid phases α and β and a liquid
phase, of the composition xe, can coexist. Te is the lowest temperature at which the
solution can exist as a liquid. A liquid with the eutectic composition freezes like
a pure substance at constant temperature equal to Te. Many alloys form eutectic
solutions, e.g., aluminium–copper, copper–zinc, antimony–lead.

9.5 Exercises

9.1 At the temperature of 298 K, the vapour pressure above pure liquids A and B

amounts to 0.031 bar and 0.029 bar, respectively. The vapour pressure above the so-
lution A+B , of the composition xA = 0.2, amounts to p = 0.041 bar, and yA = 0.44
is the vapour composition. Calculate the activity coefficients of both components in
the solution, assuming that vapour is an ideal gas. The behaviour of which compo-
nent is closer to the predictions of Raoult’s law?
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9.2 Liquids A and B form an azeotrope, whose composition at the azeotropic point
amounts to xA = xa = 0.70, at the temperature of 298 K. The ratio of vapour pres-
sures above pure liquids at T = 298 K amounts to p∗

A/p∗
B = 2.5. Assuming the

simple solution model, determine the coefficient gAB . Is it a positive or negative
azeotrope? Assume that the vapour above the solution is an ideal gas and gAB does
not depend on pressure.

9.3 At a given temperature T , the coefficient gAB(T ) = 0.9RT . Does the simple so-
lution characterized by this value of gAB form an azeotrope if the ratio of the vapour
pressures above pure components amounts to p∗

A/p∗
B = 3 at the temperature T ?

9.4 At atmospheric pressure, two liquids form a simple solution for which

gAB(T )/RT = 5(T − T0) K−1 − 2(T − T0)
2 K−2,

where T0 is a reference temperature. Does a miscibility gap occur in this mixture,
and if so, what is the shape of the miscibility curve, how many critical points does
it have and what are the values of the critical temperatures?

9.5 Liquids A and B form an azeotrope. Assuming that at a given temperature T

we know the vapour pressures of pure components, p∗
A �= p∗

B , and the composition
at the azeotropic point, xA = xa , calculate the Henry constant of the solute B in
the solvent A at the temperature T . Assume the simple solution model with the
coefficient gAB independent of pressure and that vapour is an ideal gas.

9.6 Apply Eqs. (9.20) and (9.21) for the bubble point and dew point isotherms to
an ideal solution of A and B . Derive the expressions for the change in the partial
molar volumes, �vA and �vB , at the liquid–vapour transition, that follow from
these equations.



Part III
Chemical Thermodynamics



Chapter 10
Systems with Chemical Reactions

10.1 Condition of Chemical Equilibrium

During a chemical reaction substances forming a mixture undergo an internal
change. Each reaction proceeds according to a certain equation, for instance,

3H2 + N2 � 2NH3. (10.1)

The substances whose amounts decrease during the reaction are called reactants
and the substances whose amounts increase are called products. Reaction (10.1) can
proceed from the left to the right or in the reverse direction, depending on the ex-
ternal conditions and initial amounts of the components. The direction from the left
to the right is regarded as positive and the reverse direction is regarded as negative.
In the example above, during the reaction in the positive direction the amounts 3ξ

of H2 and 1ξ of N2 disappear from the system and the amount 2ξ of NH3 is pro-
duced, where ξ is a common factor, whose physical dimension is the mole, which
determines the progress of the reaction. It is often convenient to write all substances
on the right-hand side of the reaction equation, i.e.,

0 � νH2H2 + νN2N2 + νNH3 NH3, (10.2)

where νH2 = −3, νN2 = −1 and νNH3 = 2. In general, the equation of a reaction
which can proceed in either direction can be written in the following form:

C′∑

i=1

|νi |Ai �
C∑

i=C′+1

νiAi, (10.3)

where Ai denotes the ith component: a reactant, if 1 ≤ i ≤ C′, or a product, if
C′ + 1 ≤ i ≤ C. The coefficients νi are called the stoichiometric coefficients. The
convention is used that νi < 0 for reactants and νi > 0 for products. If νi = 0 for a
certain value of i it means that the component Ai does not participate in the given
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reaction. Writing all components on the right-hand side of the reaction equation and
using the convention for the sign of stoichiometric coefficients, we obtain

0 �
C∑

i=1

νiAi. (10.4)

During the reaction, the amounts of individual components change according to
the following formula:

ni(ξ) = ni(0) + νiξ, (10.5)

where i = 1, . . . ,C and ni(0) is the value of ni at ξ = 0, hence

dni = νidξ. (10.6)

The parameter ξ is called the extent of reaction. If the reaction proceeds from the left
to the right then ξ > 0 and if it proceeds in the reverse direction then ξ < 0. First
we consider a reaction which proceeds in the positive direction. Since νi < 0 for
reactants, there exists a maximum value ξ = ξmax that ni(ξmax) = 0 for one of the
reactants. Obviously all ni must be positive or zero, thus, the reaction stops when
ξ reaches the maximum value. Similarly, a reaction which proceeds in the negative
direction stops when ξ reaches a minimum value ξmin. Therefore, the following
inequality holds:

ξmin ≤ ξ ≤ ξmax, (10.7)

where ξmin and ξmax depend on the initial amounts of the components, ni(0).
We consider a multi-component system in which a reaction occurs at constant

temperature and pressure, which is a common situation in practice. Therefore, the
Gibbs free energy is to be used to study the system. Then we consider a virtual
process in which the mole numbers ni change according to formula (10.5). Suppose
also that we can control the reaction, so that at any moment the state of the system
is an equilibrium state with some constraints. For such states, we can treat the Gibbs
free energy as a function of ξ , using to the relation

G(T ,p, ξ) = G
(
T ,p,n1(ξ), . . . , nC(ξ)

)
. (10.8)

An infinitesimal change in G in the reaction amounts to

dG =
C∑

i=1

(
∂G

∂ni

)

T ,p,nj �=i

dni =
C∑

i=1

μiνidξ, (10.9)

where μi is the chemical potential of the ith component. The quantity

A = −
(

∂G

∂ξ

)

T ,p

= −
C∑

i=1

νiμi (10.10)

is called the affinity of reaction. If G is a decreasing function of ξ (A > 0) then the
reaction which proceeds in the positive direction is a spontaneous process, whereas
if G increases with ξ (A < 0) then the reverse reaction proceeds spontaneously.



10.1 Condition of Chemical Equilibrium 227

Fig. 10.1 Gibbs free energy
as a function of the extent of
reaction. The values Geq and
ξeq correspond to the state of
chemical equilibrium. The
reaction proceeds
spontaneously in one or the
other direction when the
affinity of reaction A �= 0

The condition of chemical equilibrium corresponds to the minimum of the func-
tion G(T ,p, ξ) at constant T and p, which is shown in Fig. 10.1. Using relation
(10.10), we obtain the following form of the chemical equilibrium condition:

A(T ,p, ξ) = −
C∑

i=1

νiμi = 0. (10.11)

We denote by ξeq the value of ξ which satisfies Eq. (10.11). When the system is in
chemical equilibrium a change in ni caused by the reaction that proceeds in the pos-
itive direction is counterbalanced by a change in ni caused by the reverse reaction,
hence, the resultant change in ni is equal to zero. Condition (10.11) is analogous to
the conditions of thermal equilibrium (equality of temperatures), mechanical equi-
librium (equality of pressures) or equilibrium with respect to matter flow (equality of
chemical potentials). Note that the system reaches the state of chemical equilibrium
or not, depending on the initial amounts of components (see (10.7)). If ξeq > ξmax or
ξeq < ξmin, then the system reaches the state of the lowest possible value of G and
the reaction stops because one of the reactants has been used up.

10.1.1 Enthalpy of Reaction

In endothermic reactions the system absorbs heat, whereas in exothermic reactions
it gives off heat to the surroundings. If a reaction proceeding in the positive direction
is endothermic then the reverse reaction is exothermic and vice versa. A system
in chemical equilibrium neither absorbs nor gives off heat. To observe a thermal
effect of the reaction, the system must deviate slightly from the state of chemical
equilibrium. We consider an infinitesimal deviation from chemical equilibrium at
constant T and p. The heat absorbed or given off by the system at constant pressure
is equal to the change in its enthalpy. Using the identity

H = G + T S = G − T

(
∂G

∂T

)

p,ni

, (10.12)
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and (10.10), we get
(

∂H

∂ξ

)

T ,p

= −A + T

(
∂A

∂T

)

p,ξ

. (10.13)

For ξ = ξeq, the affinity of reaction vanishes (A = 0), whereas the derivative of A

with respect to temperature differs from zero, in general, hence, the enthalpy of
reaction is defined as follows:

(
∂H

∂ξ

)

eq
=

[(
∂H

∂ξ

)

T ,p

]

ξ=ξeq

= T

(
∂A

∂T

)

p,ξ=ξeq

. (10.14)

10.2 Effect of External Perturbation on Chemical Equilibrium

The state of chemical equilibrium is determined from the condition

A(T ,p, ξ) = 0, (10.15)

which is an equation for ξ at constant T and p. The solution of (10.15) is denoted
by ξeq(T ,p). Now we want to investigate how ξeq changes when the external con-
ditions, i.e., the temperature or pressure, vary. To do this, we use the identity

A
(
T ,p, ξeq(T ,p)

) = 0. (10.16)

10.2.1 Effect of Temperature

First, we differentiate (10.16) with respect to temperature at constant p:
(

∂A

∂T

)

p,ξeq

+
(

∂A

∂ξeq

)

T ,p

(
∂ξeq

∂T

)

p

= 0. (10.17)

Since G has a minimum at ξeq, it follows from (10.10) that

−
(

∂A

∂ξeq

)

T ,p

=
[(

∂2G

∂ξ2

)

T ,p

]

ξ=ξeq

= G
eq
ξξ > 0. (10.18)

Using (10.14), (10.17) and (10.18), we find that at p = const,
(

∂ξeq

∂T

)

p

= (
T G

eq
ξξ

)−1
(

∂H

∂ξ

)

eq
. (10.19)

From relation (10.19), we conclude that the chemical equilibrium shifts in the di-
rection in which the enthalpy of the system increases. In the case of an endother-
mic reaction, we have (∂H/∂ξ)eq > 0, thus, ξeq increases with temperature, i.e., the
chemical equilibrium shifts in the direction of products. In the case of an exothermic
reaction, (∂H/∂ξ)eq < 0, hence, ξeq decreases with temperature and the chemical
equilibrium shits in the direction of reactants.
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Corollary 10.1 An increase in the temperature of the system at constant pressure
shifts the position of chemical equilibrium in the direction in which the enthalpy of
the system increases.

To better understand the behaviour of the system, we calculate the total change in
its enthalpy caused by a change in temperature. We treat the enthalpy as a function
of T , p and ξ , and substitute ξ = ξeq(T ,p). For p = const, we have:

dH = CpdT +
(

∂H

∂ξ

)

eq
dξeq, (10.20)

where Cp is the heat capacity at constant pressure. The first term in (10.20) is related
to the transfer of heat in the state of chemical equilibrium and the second term is
related to the shift of chemical equilibrium. Substituting

dξeq = (
T G

eq
ξξ

)−1
(

∂H

∂ξ

)

eq
dT (10.21)

(see (10.19)) into (10.20), we get

dH =
[
Cp + (

T G
eq
ξξ

)−1
(

∂H

∂ξ

)2

eq

]
dT , (10.22)

which means that the shift of chemical equilibrium increases the total heat capacity
of the system. Since a system with large heat capacity changes its temperature less
than a system with small heat capacity, for the same amounts of heat absorbed, the
shift of chemical equilibrium reduces the increase in the temperature of the system.
In that way, the effect of external perturbation on the system is reduced.

10.2.2 Effect of Pressure

Because of the relation

V =
(

∂G

∂p

)

T ,ni

, (10.23)

the volume of the system, V , can be treated as a function of temperature, pressure
and the extent of reaction. Differentiating V with respect to ξ at constant T and p,
we get

(
∂V

∂ξ

)

eq
=

[(
∂V

∂ξ

)

T ,p

]

ξ=ξeq

= −
(

∂A

∂p

)

T ,ξ=ξeq

. (10.24)

Differentiation of (10.16) with respect to pressure at constant T gives
(

∂A

∂p

)

T ,ξeq

+
(

∂A

∂ξeq

)

T ,p

(
∂ξeq

∂p

)

T

= 0, (10.25)
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hence, using (10.10), (10.24) and (10.25), we get
(

∂ξeq

∂p

)

T

= −(
G

eq
ξξ

)−1
(

∂V

∂ξ

)

eq
. (10.26)

From relation (10.26), it follows that the position of chemical equilibrium shifts in
the direction in which the volume of the system decreases. If in a given reaction
the volume of the system decreases, i.e., (∂V/∂ξ)eq < 0, the chemical equilibrium
shifts towards products, and if the volume increases, the chemical equilibrium shifts
towards reactants.

Corollary 10.2 An increase in the pressure of the system at constant temperature
shifts the position of chemical equilibrium in the direction in which the volume of
the system decreases.

Analogously to the case of enthalpy, we calculate the total change in the vol-
ume of the system caused by a change in pressure. In chemical equilibrium,
V = V (T ,p, ξeq) depends only on T and p. An infinitesimal change in V caused
by a change in pressure at T = const amounts to

dV = −V κT dp +
(

∂V

∂ξ

)

eq
dξeq, (10.27)

where κT is the isothermal compressibility. Using (10.26), we obtain

dV = −V

[
κT + (

V G
eq
ξξ

)−1
(

∂V

∂ξ

)2

eq

]
dp, (10.28)

which means that the shift of chemical equilibrium increases the total isothermal
compressibility of the system. Since for the same relative change in volume, the
pressure changes less in a system with large compressibility than in a system with
small compressibility, the shift of chemical equilibrium reduces the increase in the
pressure of the system. In that way, the effect of external perturbation on the system
is reduced.

10.2.3 Le Chatelier–Braun Principle

A concise summary of Corollaries 10.1, 10.2 and relations (10.22), (10.28) is given
by the Le Chatelier–Braun principle formulated below.

Corollary 10.3 If a system in chemical equilibrium experiences external perturba-
tion of the equilibrium state, then the equilibrium shifts to minimize the effect of the
perturbation.

We illustrate the Le Chatelier–Braun principle by the reaction

3H2 + N2 � 2NH3. (10.29)
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Example 10.1 The synthesis of ammonia is an exothermic reaction. An increase in
the temperature of the surroundings causes flow of heat into the system. If there was
no chemical reaction in the system, the flow of heat would increase its temperature
by �T . However, the external perturbation launches the reverse endothermic reac-
tion of ammonia decomposition, which absorbs a part of the heat supplied to the
system. As a result, the increase in the temperature is smaller than �T . Eventually,
a new equilibrium state with a smaller concentration of ammonia settles down at a
higher temperature.

Example 10.2 During the synthesis of ammonia the volume of the system decreases
because 4 mol of hydrogen and nitrogen change into 2 mol of ammonia. Suppose
we perturb the equilibrium state, increasing the external pressure, which reduces the
volume occupied by the gases and increases the pressure in the system. To counter-
act the increase in the pressure, the synthesis reaction is launched, which reduces the
total mole number. As a result, the pressure increases less than it would do if there
was no reaction in the system. Eventually, a new equilibrium state with a higher
concentration of ammonia settles down at a higher pressure.

10.3 Law of Mass Action for Ideal Gases

We consider a mixture of ideal gases in which a chemical reaction occurs. In this
case (see Sect. 7.4.2), we have

μi = μ0
i (T ) + RT ln

pi

p0
, (10.30)

where pi , μ0
i and p0 denote the partial pressure and standard chemical potential of

the ith component, and the standard pressure, respectively. Therefore, the affinity of
reaction adopts the following simple form:

A = −
C∑

i=1

νiμ
0
i (T ) − RT ln

C∏

i=1

(
pi

p0

)νi

. (10.31)

The first sum in (10.31) is called the standard Gibbs free energy of reaction, for
which we use the symbol �rG

0, i.e.,

�rG
0 =

C∑

i=1

νiμ
0
i . (10.32)

It represents a hypothetical process in which unmixed reactants react, giving sepa-
rated products, and both the reactants and products are in their standard states. It is
also convenient to introduce the standard equilibrium constant

K0 = exp

(
−�rG

0

RT

)
. (10.33)
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This definition of K0 is general, i.e., it does not refer to ideal gases only.
The condition of chemical equilibrium, A = 0, applied to (10.31) leads to a rela-

tion called the law of mass action:

C∏

i=1

(
pi

p0

)νi

= K0. (10.34)

K0 is only a function of temperature, which follows from its definition. The law
of mass action can also be expressed in the form of a relation between the molar
fractions. Substituting pi = pxi into (10.34), we obtain

C∏

i=1

x
νi

i = Kx, (10.35)

where Kx is called the equilibrium constant, and the index x means that the law of
mass action is expressed in terms of the molar fractions. Comparing (10.34) with
(10.35), we find that

Kx =
(

p

p0

)−�n

K0(T ), (10.36)

where

�n =
C∑

i=1

νi . (10.37)

Thus, Kx is a function of both temperature and pressure. We recall that the stoichio-
metric coefficients are negative for reactants and positive for products, which means
that on the left-hand side of the mass-action law, in the form (10.34) or (10.35), we
have a certain quotient. For instance, (10.35) can be expressed as

∏
i x

νi

i
∏

j x
|νj |
j

= Kx, (10.38)

where the indices i and j number the products and reactants, respectively.

Example 10.3 We illustrate the law of mass action by reaction (10.29). From
(10.38), we get

x2
NH3

x3
H2

xN2

= Kx. (10.39)

Since xNH3 = 1 − xH2 − xN2 , (10.39) is a relation between the molar fractions of
hydrogen and nitrogen in chemical equilibrium, for the given T and p.
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10.3.1 Effect of Temperature on the Equilibrium Constant

From definition (10.33) of the standard equilibrium constant K0 and the Gibbs-
Helmholtz relation (see (8.29)), one derives the van ’t Hoff equation:

d lnK0(T )

dT
= − 1

R

d

dT

(
�rG

0

T

)
= �rH

0

RT 2
, (10.40)

where �rH
0 denotes the standard enthalpy of reaction. From definition (10.32), we

get

�rH
0 =

C∑

i=1

νih
0
i (T ), (10.41)

where h0
i is the molar enthalpy of the pure substance i in its standard state. Relation

(10.40) can be used to determine �rH
0 from the dependence of the equilibrium

constant on temperature, which can be obtained from the law of mass action.
Now we calculate the enthalpy of reaction defined by (10.14). Using (10.32) and

(10.33), we express A as follows:

A(T ,p, ξ) = RT lnK0(T ) − RT

C∑

i=1

νi

(
ln

p

p0
+ lnxi

)
. (10.42)

The molar fractions depend only on ξ because ni = ni(0) + νiξ , therefore,

T

(
∂A

∂T

)

p,ξ

= A + RT 2 d lnK0(T )

dT
. (10.43)

As we know A = 0 in chemical equilibrium, thus, using (10.14) and the van ’t Hoff
equation, we get

(
∂H

∂ξ

)

eq
= �rH

0. (10.44)

Relation (10.44) follows from the fact that the enthalpy of mixing vanishes for ideal
gases (see Sect. 7.4.3), therefore, the total thermal effect of reaction comes only
from the standard enthalpy of reaction.

10.3.2 Effect of Pressure on the Equilibrium Constant

The constant K0 depends only on temperature. Therefore, to determine the effect
of pressure on the position of chemical equilibrium for a mixture of ideal gases, we
differentiate lnKx with respect to pressure, using (10.36), hence

(
∂ lnKx

∂p

)

T

= −�n

p
= −�V

RT
. (10.45)
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We have used here the ideal gas equation of state: pV = nRT , hence

p�V = RT �n, (10.46)

where �V is the total change in the volume of the mixture for the reaction in the
positive direction. For instance, in the synthesis of ammonia (see (10.29)), �n =
−3 − 1 + 2 = −2. Thus, the value of Kx increases with pressure, which means that
the equilibrium shifts in the direction of higher concentration of NH3 (see (10.39)).

10.4 Thermochemistry

Chemical reactions are usually irreversible processes, i.e., they proceed in one direc-
tion only. The equation of a irreversible chemical reaction has the following general
form:

0 →
C∑

i=1

νiAi, (10.47)

where νi are negative for reactants and positive for products. If the initial and final
states are equilibrium states then all state functions and their changes in the reaction,
are well defined quantities. Thermochemistry studies thermal effects of chemical
reactions.

10.4.1 Hess’ Law

If the reaction occurs at constant pressure then the heat absorbed or given off by the
system is equal to the change in its enthalpy, i.e.,

Q = �H. (10.48)

Since enthalpy is a state function, the standard enthalpy of reaction �rH
0 (see

(10.41)) depends only on the initial state (unmixed reactants) and the final state
(separated products) of the system. In other words, it does not depend on the pro-
cess that brings the system from the initial to final state. Making use of this fact, we
can calculate �rH

0 for reactions whose thermal effect is difficult to measure. To
achieve this, a given reaction should be expressed as a sum of reactions for which
�rH

0 is known.

Corollary 10.4 The standard enthalpy of a given reaction is equal to the sum of
standard enthalpies of reactions into which the given reaction can be decomposed.

For historical reasons, the above conclusion is called Hess’ law, although it is only
a consequence of the fact that enthalpy is a state function.
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In general, �rH
0 is a function of temperature but often its value at the tempera-

ture of 298.15 K (25 °C) is given. An example of application of Hess’ law is given
below. For convenience, we mark the phase in which a given compound exists at the
standard pressure p0 = 1 bar and temperature of 25 °C, i.e., the gaseous (g), liquid
(l) or solid (s) phase.

Example 10.4 The reaction

C2H4(g) + H2(g) → C2H6(g), (10.49)

in which three gases participate, can be decomposed into the following three reac-
tions:

C2H4(g) + 3O2(g) → 2CO2(g) + 2H2O(l),

H2(g) + 1

2
O2(g) → H2O(l),

C2H6(g) + 7

2
O2(g) → 2CO2(g) + 3H2O(l),

with �rH
0 equal to, respectively:

−1411.3 kJ mol−1, −285.8 kJ mol−1, −1559.8 kJ mol−1.

Using the same rules as in the case of algebraic equations, we add the first re-
action to the second one and then subtract the third reaction, to obtain reaction
(10.49). Then we do the same with the standard enthalpy of reaction, i.e., we
subtract the third enthalpy from the sum of the first and second one, which gives
�rH

0 = −137.3 kJ mol−1 for reaction (10.49).

10.4.2 Standard Enthalpy of Formation

If all reactants of a given reaction are elements then the standard enthalpy of reaction
is called the standard enthalpy of formation and is denoted by �f H 0.

Example 10.5 The reaction of formation of methane from the elements,

C(s) + 2H2(g) → CH4(g), (10.50)

can be decomposed into the following three reactions:

CH4(g) + 2O2(g) → CO2(g) + 2H2O(l),

C(s) + O2(g) → CO2(g),

2H2(g) + O2(g) → 2H2O(l),

for which �rH
0 amounts to, respectively:

−890.4 kJ mol−1, −393.5 kJ mol−1, −571.6 kJ mol−1.
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Fig. 10.2 Application of Hess’ law to the calculation of the standard enthalpy of reaction �rH
0.

At the first stage, the reactants are decomposed into the elements. At the second stage, the products
of the original reaction are synthesized from the elements obtained at the first stage. �f H 0 denotes
the standard enthalpy of formation

Subtracting the first reaction from the sum of the second and third one, we obtain
reaction (10.50), hence, the standard enthalpy of formation amounts to �f H 0 =
−74.7 kJ mol−1.

The standard enthalpy of formation is of great importance because each reaction
can be split, at least mentally, into two stages. At the first stage, each reactant is
decomposed into the elements. At the second stage, the products of the original
reaction are synthesized from the elements obtained at the first stage. Figure 10.2 is a
visual presentation of this idea. Note that the first stage is the reverse of the synthesis
of a given reactant from the elements, hence, the corresponding enthalpy of reaction
for that reactant is equal to −�f H 0. Therefore, �rH

0 for a given reaction can be
formally presented as follows:

�rH
0 =

∑

products

νi�f H 0
i −

∑

reactants

|νi |�f H 0
i , (10.51)

where �f H 0
i denotes the enthalpy of formation of the ith compound participating

in the reaction.

Example 10.6 We want to calculate �f H 0 for the combustion of liquid benzene,
i.e.,

C6H6(l) + 15

2
O2(g) → 6CO2(g) + 3H2O(l). (10.52)

According to (10.51) we have

�rH
0 = 6�f H 0

CO2
+ 3�f H 0

H2O − �f H 0
C6H6

− 15

2
�f H 0

O2
.

Substituting the value of �f H 0 for each compound, we obtain

�rH
0 =

[
6(−393.5) + 3(−285.8) − 49.0 − 15

2
× 0

]
kJ mol−1

= −3267.4 kJ mol−1.
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Note that �f H 0
O2

= 0 because the standard enthalpy of formation refers to the
ground states of elements, i.e., to their most stable form at a given temperature and
the pressure of 1 bar. Therefore, the standard enthalpy of formation of an element is
zero by definition. For example, at the temperature of 25 °C and pressure of 1 bar,
the most stable form of oxygen is the molecule O2, hence �f H 0

O2
= 0.

10.4.3 Kirchhoff Equation

The temperature 25 °C, for which the standard enthalpy of reaction is usually given,
has been selected arbitrarily. Obviously chemical reactions can occur at very differ-
ent temperatures. Therefore, a problem arises how to obtain �rH

0 as a function of
temperature if we know its value at 25 °C or at another reference temperature. We
can do it if we know the molar heat capacity at constant pressure for each compound
participating in a given reaction. Differentiating (10.41) with respect to temperature,
we get the relation

�rc
0
p =

(
∂�rH

0

∂T

)

p

=
C∑

i=1

νic
0
p,i , (10.53)

called the Kirchhoff equation, where

c0
p,i =

(
∂h0

i

∂T

)

p

(10.54)

denotes the molar heat capacity at constant pressure of the ith compound in its
standard state. Then we integrate (10.53) from T1 to T2, to get

�rH
0(T2) − �rH

0(T1) =
∫ T2

T1

�rc
0
p(T )dT . (10.55)

If �rc
0
p is approximately constant in the range of temperature considered, then

�rH
0(T2) = �rH

0(T1) + �rc
0
p(T1)(T2 − T1). (10.56)

If, however, the dependence of �rc
0
p on temperature in the interval T1 < T < T2,

cannot be neglected, then the integral needs to be calculated. For instance, in the
case of linear dependence on temperature, i.e.,

�rc
0
p(T ) = a + bT , (10.57)

we obtain

�rH
0(T2) = �rH

0(T1) + �rc0
p(T2 − T1), (10.58)

where

�rc0
p = 1

2

[
�rc

0
p(T1) + �rc

0
p(T2)

]
(10.59)

denotes the average value.
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Example 10.7 At the temperature T1 = 25 °C, the standard enthalpy of formation of
water vapour amounts to �f H 0(T1) = −241.83 kJ mol−1 and we want to calculate
�f H 0(T2) at T2 = 100 °C. To do it, we apply (10.58). In the range of temperature
considered, the average value of c0

p for individual reactants amounts to (in units of

J K−1 mol−1): 28.95 for H2(g), 29.46 for O2(g) and 33.60 for H2O(g). The reaction
proceeds according to the equation

H2(g) + 1

2
O2(g) → H2O(g), (10.60)

hence (see (10.53)),

�rc0
p = c0

p,H2O − c0
p,H2

− 1

2
c0
p,O2

= −10.08 J K−1 mol−1,

and after substitution into (10.58) we get

�f H 0(T2) = −242.59 kJ mol−1.

10.5 Phase Rule for Chemical Systems

Several reactions can occur simultaneously in a system, and each of them proceeds
according to a certain equation of reaction such as Eq. (10.4). To each reaction a
different set of stoichiometric coefficients corresponds and some of the coefficients
can be equal to zero. For R reactions, there are r = 1, . . . ,R equations of the form

0 �
C∑

i=1

ν
(r)
i Ai . (10.61)

An infinitesimal change in the mole numbers ni associated with the r th reaction has
the same form as in (10.6), i.e.,

dn
(r)
i = ν

(r)
i dξ (r), (10.62)

where ξ (r) denotes the extent of that reaction. Summing up over all reactions, we
obtain

dni =
R∑

r=1

ν
(r)
i dξ (r), (10.63)

hence

dG =
C∑

i=1

μidni =
R∑

r=1

(
C∑

i=1

ν
(r)
i μi

)
dξ (r). (10.64)

The state of chemical equilibrium corresponds to the minimum of G over the pa-
rameters ξ (1), . . . , ξ (r) at constant T and p. At the minimum, all coefficients at the
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differentials dξ (r) in Eq. (10.64) must vanish, which leads to R equations for the
chemical potentials:

C∑

i=1

ν
(r)
i μi = 0. (10.65)

Now we consider the general case of a C-component system in which P phases
coexist and R chemical reactions occur simultaneously. The system is in chemi-
cal equilibrium, thus, conditions (10.65) must be satisfied. To find the number of
degrees of freedom f for the system (see Sect. 7.7), we have to subtract from the to-
tal number of intensive variables the number of independent equations which these
variables must satisfy in thermodynamic equilibrium. The intensive variables are:
the chemical potentials of all components in all phases and the temperature and
pressure, i.e., CP + 2 variables altogether. The independent equations that must be
satisfied are: P Gibbs–Duhem equations (see (7.143)), P −1 equalities of the chem-
ical potentials for each component (see (7.144)), which gives C(P − 1) equations,
and R equations (10.65) for the chemical equilibrium. Therefore, the total number
of independent equations is equal to P +CP −C +R, hence, the number of degrees
of freedom amounts to

f = C + 2 − P − R. (10.66)

This is the phase rule for a chemical system. If no chemical reaction occurs in the
system (R = 0) we simply recover (7.145).

Example 10.8 In a two-component system in which two phases coexist and one
chemical reaction occurs, f = 2 + 2 − 2 − 1 = 1. The temperature or pressure can
be chosen as an independent variable.

Note that if a certain reaction proceeds to the completion, i.e., until one of the com-
ponents is exhausted, then both R and C decrease by one, whereas the number of
degrees of freedom does not change. An important conclusion follows from this ob-
servation. To study equilibrium states of a given chemical system, there is no need
to consider all potential reactions that can occur if some of them proceed to the
completion and some components practically disappear from the system.

Hitherto we have not discriminated between a compound and component. How-
ever, in the case of a system with chemical reactions for which conditions of chem-
ical equilibrium (10.65) are satisfied, such a discrimination can be necessary (see
Chap. 11). A compound is a particle in the chemical sense, e.g., an atom, molecule,
ion, or a collection of such particles, whereas a component of a mixture is a com-
pound whose amount can be varied independently of amounts of other compounds.
For instance, when hydrogen and nitrogen are mixed, we obtain three compounds:
H2, N2 and NH3, because of the reaction

3H2 + N2 � 2NH3.

However, only the amounts of two of them can be varied independently, therefore,
we have two components. For instance, if we know the amounts of hydrogen and
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nitrogen, then the amount of ammonia follows from the condition of chemical equi-
librium. Then C in Eq. (10.66) denotes the number of all compounds, whereas the
number of components is equal to C − R. After this modification of meaning of a
component, the phase rule adopts form (7.145) whether chemical reactions occur in
a given system or not.

10.6 Exercises

10.1 The condition of chemical equilibrium, (∂G/∂ξ)T ,p = 0, corresponds to a
minimum of the Gibbs free energy, thus, the condition of stability, (∂2G/∂ξ2)T ,p >

0, must be satisfied for ξ = ξeq. Prove that in the case of ideal gases the stability
condition is always satisfied.

10.2 Derive a relation between the change in the enthalpy, �H , and the change in
the internal energy, �U , for a reaction at constant temperature, if all reactants and
products are ideal gases.

10.3 Find the change in the equilibrium constant Kx for the following reactions:

CO(g) + Cl2(g) � COCl(g) + Cl(g),

2SO2(g) + O2(g) � 2SO3(g),

assuming a twofold increase in pressure at constant temperature.

10.4 The reaction

3A(g) + B(g) � C(g) + 2D(g)

takes place at constant pressure and temperature in a vessel occupied initially by
2 mol of A, 1

3 mol of B , 1 mol of C and 1
2 mol of D. Determine the mini-

mum and maximum value of the extent of reaction. Assuming that all reactants
and products are ideal gases and the state of chemical equilibrium corresponds to
ξ = ξeq = 1

4 mol, calculate the reaction constant Kx .

10.5 The reaction

A(g) + B(g) � 2C(g),

where A, B and C are ideal gases, occurs at constant temperature and at the pressure
of 1 bar. Calculate the molar fractions of all gases in the state of chemical equilib-
rium if the standard equilibrium constant of the reaction K0 = 1. Consider two sets
of the initial values of molar fractions: (a) xA(0) = 0.5, xB(0) = 0.5, xC(0) = 0 and
(b) xA(0) = 0.25, xB(0) = 0.75, xC(0) = 0.

10.6 Phosphorus pentachloride undergoes a decomposition into phosphorus trichlo-
ride and chlorine above the temperature of 200 °C, i.e.,

PCl5(g) � PCl3(g) + Cl2(g).
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Before the reaction started the sample of PCl5 had a mass of 1.9 g. The reaction
proceeds at a temperature of 320 °C and pressure of 0.314 bar. When the system
reaches the equilibrium state it occupies the volume Veq = 2.4 L. Calculate the stan-
dard equilibrium constant K0 and the percentage of decomposed PCl5 molecules,
assuming that all compounds participating in the reaction are ideal gases.

10.7 The decomposition reaction

A(g) � B(g) + C(g)

is endothermic. At the temperature T0 and pressure p0, the system has reached
an equilibrium state in which the molar fraction of the component A is equal to
xA(T0,p0). What is the direction of the shift of chemical equilibrium if: (a) the
temperature increases from T0 to T1 at constant pressure p = p0, (b) the pressure
increases from p0 to p1 at constant temperature T = T0?

10.8 For the given reaction, we know the standard equilibrium constant K0 and the
standard enthalpy of reaction, �rH

0, at the temperature T0. What is the value of K0

at the temperature T1 > T0 if T1 does not differ too much from T0?

10.9 The standard enthalpy of reaction at the temperature T0 = 298 K is equal to
�rH

0 = 32 kJ mol−1. Estimate the value of the standard equilibrium constant K0

at the temperature T1 = 310 K, with respect to K0(T0).

10.10 The decomposition reaction

2A(g) � B(g) + C(g)

proceeds at constant pressure and temperature. At the temperature T1 = 300 K, 40 %
of molecules of the substance A are decomposed, whereas at the temperature T2 =
315 K the percentage of decomposed molecules increases to 42 %. What is the value
of the standard enthalpy of reaction �rH

0? Assume that all compounds are ideal
gases, and �rH

0 does not depend on temperature.

10.11 The decomposition reaction of the substance A is characterized by the equa-
tion

A(g) � νBB(g) + νCC(g).

The degree of dissociation for the decomposition reaction is defined as follows. We
denote by nA the mole number of the substance A present in the system in chemical
equilibrium, and by nd the mole number of that part of A which is decomposed into
B and C. Then the degree of dissociation α = nd/ni , where ni = nA + nd is the
initial mole number of A present in the system before the reaction started. Find the
relation between α and the equilibrium constant Kx if A, B and C are ideal gases.

10.12 Calculate the standard enthalpy of the reaction

C2H4(g) + H2(g) → C2H6(g),
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using the reactions:

C2H4(g) + 3O2 → 2CO2(g) + 2H2O(l),

H2(g) + 1

2
O2(g) → H2O(l),

C2H6(g) + 7

2
O2(g) → 2CO2(g) + 3H2O(l),

for which the standard enthalpy of reaction amounts to −1411.3 kJ mol−1,
−285.8 kJ mol−1 and −1559.8 kJ mol−1, respectively.

10.13 Calculate the standard enthalpy of formation of 1 mol of N2O5, using the
data for the following reactions:

2NO(g) + O2(g) → 2NO2(g),

4NO2(g) + O2(g) → 2N2O5(g),

N2(g) + O2(g) → 2NO(g).

The standard enthalpy for these reactions amounts to −114.1 kJ mol−1,
−110.2 kJ mol−1 and 180.5 kJ mol−1, respectively.

10.14 The reaction of propane combustion has the following form:

C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(l).

The standard enthalpy of formation amounts to, respectively: �f H 0
C3H8

=
−103.7 kJ mol−1, �f H 0

CO2
= −393.5 kJ mol−1, �f H 0

H2O = −285.8 kJ mol−1. As-
suming that 4 mol of water are formed in the reaction and the gases participating in
it are ideal, calculate the standard enthalpy of reaction and the change in the volume
and internal energy of the system. The temperature of the system before and after
the reaction amounts to 25 °C.

10.15 Calculate the change in the internal energy and enthalpy for the synthesis of
ammonia:

3H2(g) + N2(g) → 2NH3(g).

Assume that all gases participating in this reaction are ideal gases in their standard
states. Calculate the work done in the reaction. The temperature at the beginning and
at the end of the reaction amounts to 298 K, and the enthalpy of ammonia formation
�f H 0

NH3
= −46.1 kJ mol−1.

10.16 Calculate the heat of formation of methane from the elements:

C(s) + 2H2(g) → CH4(g),

at the temperature T = 298 K. Consider two cases: (1) p = const = 1 bar, (2) V =
const. Make use of the following reactions of formation:
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H2(g) + 1

2
O2(g) → H2O(l),

C(s) + O2(g) → CO2(g),

for which �f H 0
H2O = −285.8 kJ mol−1, �f H 0

CO2
= −393.5 kJ mol−1, and the re-

action of methane combustion

CH4(g) + 2O2(g) → CO2(g) + 2H2O(l),

with �rH
0 = −890.3 kJ mol−1. Assume that hydrogen and methane are ideal gases.

10.17 The standard enthalpy of the reaction

2A(g) + B(g) → 3C(g),

amounts to �rH
0 = −20 kJ mol−1 at the temperature of 298 K . The substances A

and B are composed of linear molecules, whereas the molecules of the substance C

have 6 degrees of freedom per molecule. Assuming that A, B and C are ideal gases,
calculate �rH

0 at a temperature of 340 K.

10.18 The reaction

A(l) � 2B(l) + D(g)

occurs in a three-component system in thermodynamic equilibrium. Find the num-
ber of degrees of freedom of the system. Consider two cases: (1) A and B mix in
any proportion, (2) A and B form two liquid phases.

10.19 A three-component system, in which the following reaction takes place:

A(l) � B(l) + C(g),

is in a condition of liquid–vapour equilibrium at the temperature T , and the liquids
A and B form an ideal solution. Assuming that C is an ideal gas, and the presence
of C in the solution can be neglected, express the pressure above the solution as
a function of the partial pressure pC . Assume also that the standard equilibrium
constant K0(T ), as well as the pressures p∗

A(T ) and p∗
B(T ) for the liquid–vapour

coexistence in pure substances, are known.

10.20 Assuming that hydrogen and water vapour are ideal gases, write the condition
of chemical equilibrium for the reaction

CuO(s) + H2(g) � Cu(s) + H2O(g).



Chapter 11
Electrochemical Systems

11.1 Electrolyte Solutions

11.1.1 Dissociation

In this chapter, we turn our attention to substances whose molecules dissociate in
a solution into free ions. Such substances are called electrolytes. An ion with an
elementary charge of the electron or its multiple is called the anion, and an ion with
an elementary charge of the proton or its multiple is called the cation. For example,
in an aqueous solution of common salt the following reaction occurs:

NaCl � Na+ + Cl−. (11.1)

In this reaction, water is a solvent and common salt is a solute. Therefore, four kinds
of molecules (compounds) are present in the solution: NaCl, the cation Na+, the
anion Cl− and H2O.1 There are only two components, however, water and common
salt, because of the conditions of chemical equilibrium and electric neutrality. In the
case of reaction (11.1), for instance, the number of the cations Na+ must be equal
to the number of the anions Cl−.

In what follows, we consider liquid solutions of electrolytes. An electrolyte dis-
solved in a solvent, such as water or methanol, dissociates according to the equation:

Xν+Yν− � ν+Xz++ + ν−Y|z−|−, (11.2)

where z+ and z− denote the charges of the cation and anion, respectively, in units
of the elementary charge e. Each molecule of the electrolyte introduces ν+ of the
cations and ν− of the anions into the solution. For instance, in the case of reaction
(11.1), we have ν+ = ν− = 1, z+ = 1 and z− = −1. The equality

ν+z+ + ν−z− = 0 (11.3)

1For the time being, we ignore the fact that a vary small part of water molecules dissociate into the
ions H+ and OH−.
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expresses the condition of electric neutrality for the molecule Xν+Yν− .
The Gibbs free energy of a two-component mixture has the following form

(see (7.17)):

G = nAμA + nBμB, (11.4)

where nA, nB denote the mole numbers and μA, μB denote the chemical potentials
of the solvent A and electrolyte B , respectively. On the other hand, taking into
account all compounds present in the solution, we obtain

G = nAμA + nuμu + n+μ+ + n−μ−, (11.5)

where the indices u, + and − refer to the undissociated molecules of the electrolyte,
to the cations and to the anions, respectively. For reaction (11.2), the numbers nB ,
nu, n+ and n− satisfy the following relations:

nu = (1 − α)nB, (11.6)

n+ = αν+nB, (11.7)

n− = αν−nB, (11.8)

where the parameter 0 ≤ α ≤ 1 is called the degree of dissociation of the electrolyte.
It means that in the total amount of the electrolyte nB , the amount αnB is dissociated
and the amount (1 − α)nB remains undissociated.

From the condition of chemical equilibrium for reaction (11.2),

μu = ν+μ+ + ν−μ−, (11.9)

and from relations (11.6)–(11.8), it follows that

nuμu + n+μ+ + n−μ− = nBμu. (11.10)

Substituting (11.10) into (11.5) and comparing with (11.4), we obtain

μB = μu, (11.11)

hence

μB = ν+μ+ + ν−μ−. (11.12)

Thus, we have related the chemical potential of the electrolyte (component B) to
the chemical potentials of ions present in the solution due to the dissociation of the
electrolyte.

11.1.2 Chemical Potential of the Electrolyte

We concentrate here on the chemical potential of the electrolyte, μB , since
the chemical potential of the solvent follows from the Gibbs–Duhem equation
(see (7.23)), i.e.,

(1 − xB)

(
∂μA

∂xB

)
T ,p

= −xB

(
∂μB

∂xB

)
T ,p

, (11.13)
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where xB is the molar fraction of the electrolyte. In what follows, we express the
composition of the solution in terms of the molality of the electrolyte, m. From the
definition of the molality (see Definition 7.4), we have

m = nB

MAnA

= xB

MA(1 − xB)
, (11.14)

where MA is the molar mass of the solvent. Multiplying both sides of (11.13) by
dxB/dm and making use of (11.14), we obtain(

∂μA

∂m

)
T ,p

= −MAm

(
∂μB

∂m

)
T ,p

. (11.15)

Note that the molality of the cations, m+, anions, m−, and the undissociated
molecules, mu, are related to m in the same way as in the case of the mole numbers
(see (11.6)–(11.8)), i.e.,

mu = (1 − α)m, (11.16)

m+ = αν+m, (11.17)

m− = αν−m, (11.18)

The chemical potentials of the cations, anions and undissociated molecules are
expressed in the following form:

μ+ = μ0+ + RT ln
m+
m0

+ RT lnγ+, (11.19)

μ− = μ0− + RT ln
m−
m0

+ RT lnγ−, (11.20)

μu = μ0
u + RT ln

mu

m0
+ RT lnγu, (11.21)

where γ+, γ− and γu denote the corresponding activity coefficients (see (7.131) and
(7.132)), which tend to unity in the limit of infinite dilution. Due to the presence
of electrostatic interaction, the positive and negative ions are always close to each
other, and any macroscopic fragment of the solution is electrically neutral. There-
fore, it is not possible to determine experimentally the properties of a solution of
anions or cations and the activity coefficients γ+ and γ−, in particular. Neverthe-
less, it is possible to determine a combination of these coefficients, using relation
(11.12). Substituting (11.19) and (11.20) into (11.12), we obtain

μB = μ0
B + RT ln

[(
m+
m0

)ν+(
m−
m0

)ν−]
+ RT ln

(
γ

ν++ γ
ν−−

)
, (11.22)

where

μ0
B = ν+μ0+ + ν−μ0− (11.23)

is the standard chemical potential of the electrolyte. The first two terms in (11.22)
correspond to the ideal dilute solution, i.e., to the limit m → 0. The last term charac-
terizes deviation from the ideal behaviour. We will see that it is peculiar to electro-
static interaction that relatively large deviation from the ideal behaviour occur even
in dilute solutions.
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It is convenient to introduce the average activity coefficient of ions, γ±, defined
as a geometrical average of γ

ν++ and γ
ν−− , i.e.,

γ ν± = γ
ν++ γ

ν−− , (11.24)

where ν = ν+ +ν−. In other words, we arbitrarily attribute to the cations and anions
the same contribution to the deviation from the ideal dilute solution, assuming that

μ+ = μ0+ + RT ln
m+
m0

+ RT lnγ±, (11.25)

μ− = μ0− + RT ln
m−
m0

+ RT lnγ±. (11.26)

Substituting (11.25) and (11.26) into (11.12), we recover relation (11.22). We can
simplify (11.22), using relations (11.17) and (11.18), hence(

m+
m0

)ν+(
m−
m0

)ν−
=

(
αm

m0

)ν

νν±, (11.27)

where we have introduced the average ν±:

νν± = ν
ν++ ν

ν−− . (11.28)

Finally, substituting (11.24) and (11.28) into (11.22), we obtain

μB = μ0
B + RT ν ln

(
γ ν±m

m0

)
, (11.29)

where γ = αγ±. When m → 0 the solution becomes an ideal dilute solution in
which all molecules of the electrolyte are dissociated. Therefore, the degree of dis-
sociation α = 1, which means that γ → 1 when m → 0. Thus, the coefficient γ

measures the deviation of a real solution from a completely dissociated ideal dilute
solution.

11.1.3 Debye–Hückel Limiting Law

We have already mentioned that solutions of electrolytes exhibit considerable devia-
tions from the ideal dilute solution even at strong dilution. The electrostatic interac-
tion between ions is responsible for such behaviour. As we know from elementary
electrostatics, the Coulomb potential of a single charge decays inversely propor-
tionally to the distance r from the charge. By comparison, the potential energy of
interaction of two electrically neutral atoms decays much faster, i.e., as r−6. There-
fore, it can be assumed that for a sufficiently dilute solution, the deviation from the
ideal behaviour is only due to the electrostatic interaction between ions. This as-
sumption allows one to calculate, in an approximate way, the contribution of the
electrostatic interaction to the chemical potential of ions. The matter is a little com-
plicated because each ion is surrounded by a cloud of ions with the opposite charge,
called the counter ions, which changes the effective electrostatic potential of a sin-
gle ion. This effect of screening of electric charges leads to the screened Coulomb
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potential which decays with the distance as r−1e−r/rD , where rD is called the De-
bye screening length. It means that the screened Coulomb potential is much smaller
than the unscreened one for r � rD . On the basis of the above model of the electro-
static interaction between ions in a solution, and with some additional assumptions,
it is possible to derive an expression for the activity coefficient of ions, γ±. The
derivation is beyond the scope of this book, however. Therefore, we present only
the final result. According to the Debye–Hückel limiting law for an electrolyte with
two kinds of ions (see (11.2)),

lnγ± = −|z+z−|a′√I , (11.30)

where the quantity

I = z2+m+ + z2−m−
2m0

(11.31)

is called the ionic strength, and the dimensionless parameter a′ depends only on
the properties of the pure solvent. Relation (11.30) holds when the ionic strength of
the solution tends to zero. From (11.31) we infer, that the dependence of I on the
ion charges is stronger than on the molality of the electrolyte. In application, the
Debye–Hückel limiting law is often expressed in terms of the decimal logarithm,
i.e.,

logγ± = −|z+z−|a√
I , (11.32)

where a = a′/ ln 10. The coefficient a is defined by the following formula:

a = F 3

4πNA ln 10

√
ρm0

2(εRT )3
, (11.33)

where ρ is the density of the solvent, ε denotes its electric permeability, NA is the
Avogadro constant, and

F = eNA = 9,6485 × 104 C mol−1 (11.34)

is called the Faraday constant. For aqueous solutions, a = 0.509 at the temperature
of 25 °C.

Substituting (11.17) and (11.18) into (11.30), we obtain

lnγ± = −|z+z−|a′I
(
m0)√ m

m0
, (11.35)

where I (m0) = (z2+ν+ + z2−ν−)/2 and we have assumed α = 1, since the limit of
infinite dilution is considered. From (11.35), it follows that γ± → 1 when m → 0,
and substituting γ± = 1 − |	γ±|, we get

|	γ±| ≈ |z+z−|a′I
(
m0)√ m

m0
. (11.36)

We recall that in the case of a non-electrolyte solution, it is assumed that the activity
coefficient of the solute can be expanded in the Taylor series around mB = 0 (or
xB = 0). Therefore, γB = 1 + 	γB with the correction term proportional to mB . As
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we can see, the presence of ions in a solution causes that the activity coefficient tends
to unity more slowly, when m → 0, than in the case of non-electrolyte solutions.
Such behaviour means simply that the approximation of the ideal dilute solution has
a narrower range of applicability in the case of electrolyte solutions than in the case
of non-electrolyte solutions.

11.2 Aqueous Solutions of Acids and Bases

11.2.1 Brønsted–Lowry Theory of Acids and Bases

According to the Brønsted–Lowry theory, molecules or ions capable of donating a
proton (ion H+) are called acid, and those capable of accepting a proton are called
base. In other words, acid is a proton donor and base is a proton acceptor. For
example, H2O, H3O+, H2SO4, HCl, NH3 are acids, and OH−, H2O, HSO−

4 , SO2−
4 ,

Cl− are bases. A concept of a conjugate acid–base pair is introduced. The acid
BH+ formed when the base B accepts a proton is called the conjugate acid of B,
and B is called the conjugate base of BH+. The conjugate acid of the given base
has always a charge larger by one unit of the positive charge e than the charge of
the base. The absolute charges of the species considered are not relevant, however.
A compound behaves as an acid if it reacts with a base which forms a covalent bond
with a proton. A reaction in which a proton transfer occurs2 can be expressed as
follows:

HA + B � A− + BH+, (11.37)

where HA, A− and BH+, B are the conjugate acid–base pairs. For instance, in the
reaction proceeding from the left to the right, the acid HA loses a proton, to form
the conjugate base A−, and the base B accepts a proton, to form the conjugate acid
BH+.

Water is an example of an amphoteric compound, which means that it behaves
both as an acid and base. For instance, the reaction of proton transfer can involve
two water molecules, i.e.,

2H2O(l)� H3O+(aq) + OH−(aq). (11.38)

One of the water molecules behaves as a base because it accepts H+, to form the
hydronium ion H3O+. The other water molecule behaves as an acid because it loses
H+, to form the hydroxide ion OH−. The reaction (11.38) is called autodissociation
of water. Another example of amphoteric nature of water is the reaction with acetic
acid:

CH3OOH + H2O � CH3COO− + H3O+, (11.39)

2The reaction of proton transfer is also called protolysis, however, this term is no longer recom-
mended because of its misleading similarity to hydrolysis or photolysis.
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in which water behaves as a base, and the reaction with ammonia:

NH3 + H2O � NH+
4 + OH−, (11.40)

in which water behaves as an acid. Reactions of proton transfer in aqueous solution
of the acid HA or base B have the following general form:

HA(aq) + H2O(l)� H3O+(aq) + A−(aq), (11.41)

B(aq) + H2O(l)� BH+(aq) + OH−(aq). (11.42)

11.2.2 pH of a Solution

The parameter pH is used to determine the acidity or basicity of a solution. It is
defined as

pH = − logaH3O+ , (11.43)

where aH3O+ denotes the activity of hydronium ions in the solution, and log stands
for the decimal logarithm. Often aH3O+ is referred to as the activity of hydrogen
ions and denoted by aH+ . In the case of dilute solutions, the activity can be replaced
by the molality m or molar concentration c, provided that the corresponding activity
coefficient can be approximated by 1. It is convenient to introduce a dimensionless
molar concentration defined as the ratio c/c0, where c0 = 1 mol L−1 is the standard
molar concentration. We use the symbol [A] for the dimensionless molar concen-
tration of the compound A, hence, its activity amounts to aA = γA[A]. For strong
dilution, the activity coefficient γA ≈ 1 and aA ≈ [A]. In this way we recover the
school definition of pH, i.e.,

pH = − log
[
H3O+]

, (11.44)

which overlaps with (11.43) in the range of small molar concentration.
The molar concentration of hydronium ions can be related to the standard equi-

librium constant of autodissociation of water (11.38):

K0 = (aH3O+)(aOH−)

(aH2O)2
. (11.45)

Since only a very small percentage of water molecules dissociate into ions, the activ-
ity of undissociated water is practically equal to the activity of pure water, aH2O ≈ 1,
hence

K0 ≈ Kw = (aH3O+)(aOH−), (11.46)

where Kw is called the ion product of water; at the temperature of 25 °C,

Kw = 1,008 × 10−14. (11.47)

Replacing the activity with molar concentration in (11.46), we get

Kw = [
H3O+][

OH−]
. (11.48)
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In pure water, [H3O+] = [OH−]. From (11.47) and (11.48), we obtain[
H3O+] = [

OH−] ≈ 10−7, (11.49)

which means that at 25 °C, the molar concentration of each ion in pure water
amounts to 10−7 mol L−1, hence

pH = 7. (11.50)

In the case of dilute aqueous solutions of acids or bases, the molar ion concentra-
tion of H3O+ changes, whereas the ion product of water does not. The reason is that
Kw is approximately equal to the equilibrium constant K0 for the autodissociation
of water which does not depend on other reactions in a given solution. According to
Eqs. (11.41) and (11.42), the number of H3O+ ions increases in aqueous solutions
of acids, whereas in aqueous solutions of bases, the number of ions OH− increases.
Higher molar concentration of [H3O+] in aqueous solutions of acids than in pure
water means that pH < 7, whereas for aqueous solutions of bases pH > 7.

11.2.3 Dissociation Constant

The dissociation reaction of the acid HA can be expressed as follows:

HA � H+ + A−. (11.51)

The equilibrium constant of this reaction is a measure of the acid strength. In aque-
ous solution, the dissociation of the acid proceeds according to Eq. (11.41). The H+
ions combine with water molecules to form hydronium ions. To write the chemi-
cal equilibrium condition (see (10.11)) for reaction (11.41), we express chemical
potentials in terms of activities, i.e.,

μi = μ0
i + RT lnai, (11.52)

where i numbers the compounds. Then, using the definition of the standard equilib-
rium constant K0 (see (10.33)), we obtain the equilibrium condition in the following
form:

K0 = (aA−)(aH3O+)

aHAaH2O
. (11.53)

In what follows we assume that the solution is sufficiently dilute, to replace the
activities with the molar concentrations, hence

K0 = [A−][H3O+]
[HA][H2O] . (11.54)

Moreover, it can be assumed that in dilute solution the molar concentration of wa-
ter is practically constant and amounts to about 55 mol L−1. Therefore, the prod-
uct K0[H2O] is also constant, and the equilibrium condition for acid dissociation
(11.51) adopts the following form:

Ka = [A−][H3O+]
[HA] , (11.55)
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where the equilibrium constant Ka is called the acid dissociation constant. Large
values of Ka correspond to strong acids, i.e., high concentration of ions in propor-
tion to the concentration of undissociated molecules. Strong acids have Ka > 1, and
weak acids have Ka < 1. For instance, hydrochloric acid (HCl) has Ka ≈ 1.6 × 106

(strong acid), and for acetic acid (CH3COOH), Ka ≈ 1.7 × 10−5 (weak acid). Note
that the range of Ka amounts to many orders of magnitude, therefore, it is more
convenient to use logarithmic scale, i.e., to define the parameter

pKa = − logKa. (11.56)

The lower value of pKa , the stronger the acid. The molar concentration of hydro-
nium ions in pure water is very small, therefore, it can be assumed that almost all
hydronium ions in the solution comes from the acid dissociation. Hence, the molar
concentration of hydronium ions in the solution is practically equal to the molar
concentration of A− ions, i.e., [

H3O+] = [
A−]

. (11.57)

If we substitute (11.57) into (11.55) then take decimal logarithm of both sides and
make use of the definition of pH (cf. (11.44)), we obtain

pH = −1

2
log

(
Ka[HA]) = 1

2
pKa − 1

2
log[HA]. (11.58)

In the case of base dissociation in aqueous solution (see (11.42)) we use a similar
reasoning as for acid dissociation. The condition of chemical equilibrium has the
following form:

Kb = [BH+][OH−]
[B] , (11.59)

where the equilibrium constant Kb is called the base dissociation constant. Since
BH+ and B form a conjugate acid–base pair, thus, the constant Kb is related to the
constant Ka for the acid BH+. Substituting [OH−] obtained from the ion product of
water (see (11.48)) into (11.59), we get

Kb = [BH+]Kw

[B][H3O+] = Kw

Ka

. (11.60)

From (11.60), it follows that a strong acid (large Ka) corresponds to a weak base
(small Kb) and vice versa.

11.3 Electrochemical Cells

11.3.1 Daniell Cell

In electrochemical cells chemical reactions are used to perform work by means of
electric current. An example of such a cell is the Daniell cell shown in Fig. 11.1. It
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Fig. 11.1 Daniell cell consists of two half-cells: a zinc electrode immersed in aqueous solution
of zinc sulfate and a copper electrode immersed in aqueous solution of copper sulfate. At the
zinc electrode (anode), zinc is oxidized, and at the copper electrode (cathode), copper is reduced.
Electrons (e−) flow from the anode to the cathode. The solutions in the two half-cells are connected
with a salt bridge, which allows the anions (A) to move between the solutions but prevents the
solutions from mixing

consists of two electrodes: a zinc (Zn) electrode and a copper (Cu) electrode, im-
mersed in aqueous solutions of their salts, which are electrolytes, i.e., in a solution of
zinc sulfate (ZnSO4) and a solution of copper sulfate (CuSO4), respectively. A sin-
gle electrode and the electrolyte solution, in which the electrode is immersed, form a
half-cell. If electric current does not flow between the electrodes, then each half-cell
is in chemical equilibrium. In the electrolyte solutions, the following dissociation
reactions occur:

ZnSO4 � Zn2+ + SO2−
4 , (11.61)

CuSO4 � Cu2+ + SO2−
4 . (11.62)

At the electrodes, either reduction (the gain of electrons by a molecule, atom or ion)
or oxidation (the loss of electrons by a molecule, atom or ion) occurs, which are
called the redox (reduction–oxidation) reactions, i.e.,

Zn2+(aq) + 2e− � Zn(s), (11.63)

Cu2+(aq) + 2e− � Cu(s), (11.64)

where (s) refers to the solid phase. When the zinc electrode is immersed in the
solution, atoms of the electrode have a tendency to leave electrons on the electrode
and pass into the solution in the form of positive zinc ions. In the case of the copper
electrode, positive copper ions in the solution exhibit a tendency to attach electrons
from the electrode and deposit on it.

When the electrodes are connected with a wire, chemical equilibrium in the half-
cells is disturbed. Electrons begin to flow from the zinc electrode, where they are in
excess, to the copper electrode. Then the reaction at the zinc electrode proceeds in
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the direction of oxidation, and the reaction at the copper electrode proceeds in the
direction of reduction, i.e.,

Zn(s) → Zn2+(aq) + 2e−, (11.65)

Cu2+(aq) + 2e− → Cu(s). (11.66)

Simultaneously with a flow of electrons, a flow of anions SO2−
4 between the half-

cells must be ensured. When zinc atoms are oxidized an excess of cations Zn2+ ap-
pears in the solution. It must be counterbalanced by anions coming from the second
half-cell, in which the number of cations Cu2+ decreases due to reduction of copper
atoms. Therefore, anions flow in the direction opposite to the flow of electrons. The
flow of anions is ensured by the salt bridge, which also prevents the solutions from
mixing. Instead of the salt bridge, a porous membrane permeable to anions only can
be used. The electrode at which reduction occurs is called the cathode because it
attracts cations. The electrode at which oxidation occurs is called the anode because
anions flow towards it. From half-cell reactions (11.66) and (11.65), we obtain the
total reaction for the Daniell cell:

Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq). (11.67)

11.3.2 Galvanic and Electrolytic Cells

A galvanic cell converts chemical energy into electrical energy. Chemical reactions
at the electrodes of a galvanic cell occur spontaneously when the electrodes are con-
nected with a conductor of electric current. An electrolytic cell converts electrical
energy into chemical energy. Chemical reactions do not occur spontaneously when
the electrodes are connected with a conductor. A chemical reaction in the cell starts
only when an external source of electricity is connected to the cell. Electrolytic
cells are used to store electrical energy in the form of chemical energy. They are
also used for decomposition of compounds by means of electric current in a pro-
cess called electrolysis. An example of electrolysis is decomposition of water into
hydrogen and oxygen.

In what follows, we concentrate on galvanic cells. An example of a galvanic cell
is the Daniell cell discussed above. A galvanic cell in its simplest form is similar
to the Daniell cell, i.e., each half-cell consists of a metallic electrode immersed in
a solution of a salt of that metal, and the two solutions are connected with a salt
bridge. The reactions taking place at the electrodes X and Y can be symbolically
expressed as follows:

Xn+ + ne− � X, (11.68)

Ym+ + me− � Y. (11.69)

Multiplying both sides of (11.69) by ν = n/m and then subtracting from (11.68),
we get the total reaction for the galvanic cell:

Xn+ + νY � X + νYm+, (11.70)
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We assume that the electrode X is the cathode and the electrode Y is the anode.
When the electrodes are connected with an electric current conductor the reaction

Xn+ + νY → X + νYm+, (11.71)

proceeds, in which reduction occurs at the electrode X, and oxidation occurs at the
electrode Y. It should be emphasized that transfer of electrons from Y to X does not
take place due to a direct reaction but through a conductor connecting the electrodes.
In a galvanic cell, the anode is the negative electrode and the cathode is the positive
electrode. In the case of an electrolytic cell, it is the other way round, i.e., the anode
is the positive polarity contact. However, the anode is always the electrode at which
oxidation takes place.

For diagrams representing galvanic cells, the convention is used that the cathode
is placed on the right-hand side and the anode is placed on the left-hand side. The
difference between the potential of the right electrode and the potential of the left
electrode of a galvanic cell is the electric potential difference E. Usually the limiting
value of E for zero current flowing through the cell is assumed.3 Then chemical
equilibrium in the half-cells is not disturbed. In practice, the measurement of E

should be performed with a voltmeter of very large internal resistance.

11.4 Reversible Cell

A chemical reaction in which ions take part can be controlled by means of an ex-
ternal electric field. It means that a reaction which would proceed spontaneously in
the absence of electric field, can be stopped or reversed if an appropriate electric
potential difference is applied. A reversible process must be quasi-static, i.e., its rate
must tend to zero. Since the rate of chemical reactions in a galvanic cell can be con-
trolled, we assume that all processes taking place in the cell are reversible. Then it
is said to be a reversible cell, i.e., working in a reversible way.

11.4.1 Work of Chemical Reaction

We consider a closed system at constant temperature T and constant pressure p. An
infinitesimal change in the Gibbs free energy, G = U − T S + pV , in a isothermal–
isobaric process amounts to

dG = dU − T dS + pdV. (11.72)

In a reversible process, T dS = d̄Q, hence, dG = d̄W +pdV . As we know, −pdV is
the mechanical work performed on the system whose volume changes by dV . The

3E is sometimes called the electromotive force, although this name is no longer recommended,
since the potential difference is not a force.
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system can also perform other kinds of work. Here we are interested in the work
done by the system by means of an electric current, due to chemical reactions in the
system. In general,

d̄W = −pdV + d̄W ′, (11.73)

where d̄W ′ denotes other kinds of work. From (11.73) and (11.72), it follows that at
constant T and p,

dG = d̄W ′ (11.74)

(see (5.33)). Below, we make use of Eq. (11.74), to derive a relation between reac-
tions taking place in the half-cells and the electric potential difference of a galvanic
cell, E, for zero electric current.

11.4.2 Nernst Equation

We assume a reversible cell, thus, (11.74) is satisfied at constant T and p. To obtain
the limit of zero electric current, the voltage Φ = −E is to be applied to the cell
from an external source of electricity. The infinitesimal work done on the cell by the
external source during transfer of a positive electric charge dq from the left half-cell
to the right half-cell amounts to

d̄W ′ = Φdq = −Edq. (11.75)

The charge dq can be related to the extent of the cell reaction, dξ . For reaction
(11.71), a change in ξ by 1 mol is equivalent to the flow of n mol of the positive
elementary charge e through the cell, hence

dq = NAnedξ = nFdξ, (11.76)

where F is the Faraday constant (see (11.34)). Using (11.74), (11.75) and (11.76),
we get

−nEFdξ = dG = −Adξ, (11.77)

where A is the affinity of reaction (see (10.10)), hence

E = A

nF
. (11.78)

In this way, we have related the electric potential difference of the cell, E, to the
affinity of the cell reaction in a reversible cell. Using reaction equation (11.70) and
relation (10.10), we obtain

A = −(μX − μXn+) + ν(μY − μYm+). (11.79)

It is convenient to express the chemical potentials in term of the activities, i.e.,

μi = μ0
i + RT lnai, (11.80)
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where i numbers the compounds participating in reaction (11.70). Substituting
(11.80) into (11.79), we obtain the Nernst equation:

E = E0 − RT

nF
lnQr, (11.81)

where E0 is called the standard cell potential, and

Qr = aX

aXn+

(
aYm+

aY

)ν

(11.82)

is the reaction quotient. It is easy to verify that E0 is related to the standard Gibbs
free energy of reaction (see (10.32)), i.e.,

E0 = −	rG
0

nF
. (11.83)

Note that relation (11.83) can also be expressed in terms of the standard equilibrium
constant K0 (see (10.33)):

E0 = RT

nF
lnK0. (11.84)

Thus, from the Nernst equation and relation (11.84), an important conclusion fol-
lows that measuring the cell potential E as a function of the electrolyte concentra-
tion, we can determine E0, and hence, the standard equilibrium constant K0. If X
and Y are pure substances, as in the case of the Daniell cell for instance, then aX = 1
and aY = 1, for p = p0. On the other hand, the ions activity is equal to its molality
for dilute solutions.

Substituting (11.84) to (11.81), we get

E = RT

nF
ln

K0

Qr

. (11.85)

If initially the cell reaction proceeds spontaneously, chemical equilibrium is reached
after some time, in which E = 0. Then the cell cannot perform any more work, be-
cause the Gibbs free energy has reached the minimum value. This situation corre-
sponds to the relation

Qr = K0, (11.86)

which expresses the law of mass action (cf. (10.35)) with activities in place of molar
fractions.

Example 11.1 For the Daniell cell (see (11.67)), we have X = Cu, Y = Zn, n =
m = 2, ν = 1, hence, the Nernst equation adopts the following form:

E = E0 − RT

2F
ln

aCu(aZn2+)

(aCu2+)aZn
. (11.87)
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11.4.3 Half-Cell Potential

Substituting (11.82) to (11.81), we get

E = ER − EL, (11.88)

where the potentials

ER = E0
R − RT

nF
ln

aX

aXn+
, (11.89)

EL = E0
L − RT

mF
ln

aY

aYm+
, (11.90)

and the standard potentials

E0
R = − (	rG

0)R

nF
, (11.91)

E0
L = − (	rG

0)L

mF
. (11.92)

correspond to the right (R) and left (L) half-cell reaction, respectively. This means
that the cell potential can be expressed as a difference between the potentials of the
right and left half-cell.

Discussing the Daniell cell, we mentioned that the half-cell reactions are redox
(reduction–oxidation) reactions. Therefore, it is convenient to treat X and Y as the
reduced forms (denoted Red), and Xn+ and Ym+ as the oxidized forms (denoted
Ox). To change the oxidized form of a substance into the reduced form, the charge
ze− needs to be delivered, which we express shortly as

Ox + ze− � Red. (11.93)

It follows from (11.89) and (11.90) that the half-cell potential, called also the redox
potential, can be expressed in the following general form:

ERed = E0
Red − RT

zF
ln

aRed

aOx
. (11.94)

Relation (11.94) is an alternative form of the Nernst equation, which refers to the
half-cell.

It should be added that there exist half-cells, in which a metallic electrode only
provides electrons for a redox reaction, but it does not take part in the reaction. For
instance, if the solution contains iron ions Fe2+ and Fe3+, then in the presence of a
platinum electrode, the following reaction occurs:

Fe3+ + e− � Fe2+, (11.95)

ERed = E0
Red − RT

F
ln

aFe2+

aFe3+
. (11.96)



260 11 Electrochemical Systems

Fig. 11.2 Potential of the
electrode X in the right
half-cell is measured with
respect to the standard
hydrogen electrode. The
platinum electrode (Pt) serves
only as a catalyzer for the
reaction H+ + e− � 1

2 H2
taking place in the left
half-cell, in which H+ ions in
the solution are in equilibrium
with gaseous hydrogen at the
standard pressure p0

11.4.4 Standard Hydrogen Electrode

If the standard potentials of two half-cells are known we can determine the standard
potential of the cell composed of them, using the relation

E0 = E0
R − E0

L. (11.97)

However, the potential of a half-cell can be determined only in reference to the
potential of another half-cell. Therefore, it is convenient to select a particular half-
cell and treat it as a reference electrode, with respect to which the standard potentials
of other half-cells are determined. Without loss of generality, we can assume that
the potential of the reference electrode is equal to zero by definition. In practice,
the standard hydrogen electrode is used as the reference electrode. It is a half-cell
containing H+ ions (protons) in the solution. In the presence of platinum, which
serves as a catalyzer, the reaction

H+ + e− � 1

2
H2. (11.98)

takes place in the solution. Hydrogen dissolved in the solution is in equilibrium with
gaseous hydrogen at the standard pressure p0. The concentration of ions H+ in the
solution also corresponds to the standard conditions, i.e., their activity aH+ = 1.

A half-cell whose potential we want to determine is placed by convention on the
right-hand side, and the standard hydrogen electrode is placed on the left-hand side,
as shown in Fig. 11.2. The potential difference E of the cell built in this way is
by definition the potential of the given half-cell. Measuring E as a function of the
electrolyte molality for very dilute solutions, it is possible to determine the standard
potential of the cell, E0, which is assumed to be the standard potential of the given
half-cell. The standard potential of different metals, ordered from the lowest to the
highest value, form the electrochemical series (Table 11.1). The sign of E0 provides
information about the direction of spontaneous reaction when all compounds are in
their standard states. If for a certain metal X we have E0 > 0, then X is said to be
more electropositive than hydrogen (e.g. Cu). This means that reduction occurs on
the electrode X, i.e., metal X deposits on the electrode. If E0 < 0, then X is more
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Table 11.1 Electrochemical
series at the temperature of
25 °C. For the hydrogen
electrode, E0 = 0 for any
temperature by definition

Electrode Electrode reaction E0 [V]

Li+/Li Li+ + e− � Li −3.05

K+/K K+ + e− � K −2.93

Na+/Na Na+ + e− � Na −2.71

Mg2+/Mg Mg2+ + 2e− � Mg −2.37

Al3+/Al Al3+ + 3e− � Al −1.66

Mn2+/Mg Mn2+ + 2e− � Mn −1.18

Zn2+/Zn Zn2+ + 2e− � Zn −0.76

Fe2+/Fe Fe2+ + 2e− � Fe −0.44

Ni2+/Ni Ni2+ + 2e− � Ni −0.25

Sn2+/Sn Sn2+ + 2e− � Sn −0.14

Pb2+/Pb Pb2+ + 2e− � Pb −0.13

H+/ 1
2 H2 H+ + e− � 1

2 H2 0

Cu2+/Cu Cu2+ + 2e− � Cu +0.34

Ag+/Ag Ag+ + e− � Ag +0.80

Pt2+/Pt Pt2+ + 2e− � Pt +1.19

Au3+/Au Au3+ + 3e− � Au +1.50

electronegative than hydrogen (e.g. Zn). Then reduction occurs on the platinum (Pt)
electrode, i.e., hydrogen is given off by the solution.

Example 11.2 To determine the standard potential of the Daniell cell, we find in
Table 11.1 the value of E0 for copper (+0.34 V) and subtract from it the value of
E0 for zinc (−0.76 V), which gives +1,10 V.

11.5 Exercises

11.1 Write the condition of chemical equilibrium for the following reactions:

NH3(g) + H2O(l)� NH+
4 (aq) + OH−(aq),

BaSO4(s) � Ba2+(aq) + SO2−
4 (aq).

In the first reaction, ammonia dissolves in water, which causes a weak electrolyte to
form. The second reaction concerns a saturated aqueous solution of slightly soluble
salt. Assume that slightly soluble salt BaSO4(s) in aqueous solution is completely
dissociated.

11.2 Generalize the concept of solubility product (see Exercise 11.1), i.e., consider
a saturated aqueous solution of slightly soluble salt AxBy which dissociates accord-
ing to the equation

AxBy(s) � xA(aq) + yB(aq),
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where A and B denote the positive and negative ions, respectively. Apply the ex-
pression derived, to calculate the molar concentration of ions in a saturated aque-
ous solution of salt Ag2CO3, assuming that the ion activities can be replaced by
their molar concentrations, and the solubility constant at the temperature of 25 °C
amounts to Ks = 6.2 × 10−12.

11.3 The standard potentials of the zinc and copper electrodes at 298 K amount to
−0.763 V and +0.339 V, respectively. Calculate the equilibrium constant for the
reaction Cu2+ + Zn � Cu + Zn2+.

11.4 In melted common salt (NaCl), cations Na+ and anions Cl− can move freely,
therefore, the liquid conducts electric current (ion conductivity), despite the fact that
crystalline salt is an insulator. At the cathode, connected to the negative terminal of
the battery, the reaction

Na+ + e− → Na,

takes place, and at the anode, connected to the positive terminal, the reaction

2Cl− → Cl2 + 2e−

takes place. The process is called electrolysis. Assume that the intensity of electric
current flowing through the salt amounts to 10 A. How long does it take to obtain
46 g of metallic sodium at the cathode and how much gaseous chlorine is produced
at the anode during this time?

11.5 A chemical reaction in a reversible cell generates the potential difference
E = 1.015 V at the temperature of 0 °C and at atmospheric pressure. From the mea-
surement of E as a function of temperature, the derivative (∂E/∂T )p = −4.02 ×
10−4 V K−1 was determined at 0 °C. Using these data, calculate the enthalpy of the
cell reaction, assuming that during oxidation each metal atom passing into solution
leaves 2 electrons. What part of the heat produced in the reaction cannot be used to
perform work?

11.6 The hydrogen electrode is composed of a platinum electrode immersed in a
solution of hydrogen ions which are in equilibrium with gaseous hydrogen. Platinum
does not take part in the reaction but serves as an electric contact and a catalyzer for
the reaction

H+(aq) + e− � 1

2
H2(g).

Find a relation between the potential of the hydrogen half-cell, the pressure of
gaseous hydrogen and the activity of hydrogen ions in the solution. Calculate the
change in the potential of the hydrogen half-cell at the temperature 25 °C if: (1) the
pressure of hydrogen has decreased 9 times at constant activity of hydrogen ions,
(2) the activity of hydrogen ions has increased 3 times at constant pressure.
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11.7 Calculate the potential of a half-cell composed of the zinc electrode in equi-
librium with zinc ions in solution, at the temperature of 25 °C and for the activ-
ity of zinc ions aZn2+ = 0.1, assuming the value of the standard potential E0

Zn =
−0.763 V.

11.8 A galvanic cell is composed of the hydrogen half-cell and another half-cell,
whose electrode is made of pure silver (Ag) in contact with solid silver chloride
(AgCl). Both electrodes are immersed in the same electrolyte, hydrochloric acid
(HCl). The oxidation takes place at the hydrogen electrode, i.e.,

1

2
H2(g) � H+(aq) + e−,

and the reduction takes place at the Ag–AgCl electrode:

AgCl(s) + e− � Ag(s) + Cl−(aq).

Write the total cell reaction and derive an expression for the potential difference E.
What quantities does E depend on? Can this cell be used to determine the average
activity coefficient of the ions, γ±, for the electrolyte?



Solutions

Exercises of Chapter 2

2.1 We calculate the total mass of air M . The mass is equal to the volume mul-
tiplied by the density. It is proper to notice the units used here: 1 g cm−3 and
1 L = 1000 cm3, whose product gives the unit of mass, i.e., 1 kg. We get

M = Vρ = 22 × 1000 cm3 × 10−3 g cm−3 = 22 g = 0.022 kg.

We neglect the fact that air is composed mainly of N2 (78 %) and O2 (21 %). Then
we use the expression for the kinetic energy. Assuming that all molecules have an
average speed of about v = 300 m s−1, which corresponds roughly to the speed of
sound in air, we obtain the kinetic energy:

E = Mv2

2
= 22 g × (300)2 m2 s−2/2 = 1980 J/2 ≈ 1 kJ.

It is proper to notice here the way we calculate numerical values. We can represent
each number in the following form: a10b, where a is of the order 1, and b is an
integer. If we have large numbers (b is positive) or small numbers (b is negative),
then this way of representation of numbers save us a lot of time during calculation
and also improves its quality, because multiplication of two numbers can be written
as a10b × c10d = ac × 10b+d . In the equation above, we have 0.022 × 90000 =
2.2 × 10−2 × 9 × 104 = 9 × 2.2 × 10−2+4 = 1980. As we can see, when a and c

are small, of the order 1, then this way of calculation is quick. The second remark
concerns rounding off. Sometimes we need very accurate numbers, but most often
we want only to find out the order of magnitude of a given quantity and for this
reason, we write 1980 J ≈ 2 kJ. The value of 2 kJ is also easier to remember than
1980 J, and the rounding-off error amounts to 1 % only.

2.2 We use the formula for the potential energy of a body in the gravitational field of
the earth, calculated with respect to the earth surface (at h = 0). In thermodynamics,
we do not know the internal energy of a body. We can only calculate changes in its
internal energy with respect to some reference states, as in the case of this exercise.

R. Hołyst, A. Poniewierski, Thermodynamics for Chemists, Physicists and Engineers,
DOI 10.1007/978-94-007-2999-5, © Springer Science+Business Media Dordrecht 2012
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Here the initial state corresponds to the energy Ei at h = 0, and the final state cor-
responds to the energy Ef at h = 5 km = 5000 m = 5 × 103 m. The mass of one
mole of water (H2O) m = 18 g. The change in its potential energy, �E, amounts to

Ef − Ei = mgh = 18 × 10−3 kg × 9.81 m s−2 × 5 × 103 m = 882.9 J ≈ 0.9 kJ.

Why is the difference in the potential energy �E independent of the way we reach
the height h = 5 km? We often hear about climbers who have found a new and
more difficult route to the top of a known mountain, K2 for instance. However, no
matter which way they choose and how much effort it requires to get to the top,
each time they do it, their potential energy increases exactly by the same amount.
We say that the potential energy is a function of the height above sea level, and not
a function of the path along which we move, to reach a given height. The essence
of thermodynamics consists in investigation of quantities, e.g., the internal energy,
which depend only on the state of a system and not on the way the given state is
reached. We note by chance that the kinetic energy of one mole of air is comparable
with the change in its gravitational energy when it is lifted a few kilometers above
sea level. This means that in a typical chemical experiment, the potential energy can
be neglected.

2.3 Heat of evaporation amounts to 40 kJ mol−1. To evaporate 1 mol of water, 40 kJ
of heat is to be supplied to the system. We denote this heat by �h, because it is
related to a state function called the enthalpy, H (see Chap. 3). The molar mass of
water is M = 18 g mol−1. Since the mass of water amounts to m = 9 g, the total
heat needed to evaporate this mass of water amounts to

Q = m

M
�h = 9 g

18 g mol−1
× 40 kJ mol−1 = 20 kJ.

Molecules in liquid water are close to one another (density of liquid water is
1 g cm−3) and they strongly interact (forming hydrogen bonds). The density of wa-
ter vapour, which escapes from the kettle, for instance, amounts to 10−3 g m−3,
thus, it is 1000 times smaller than the density of liquid water. It means, that wa-
ter molecules in the vapour are 10 times farther away from one another than in
liquid water (think how to determine this ratio from the ratio of the densities
of liquid water and water vapour). 1 mol of water contains NA = 6.022 × 1023

molecules, and each H2O molecule has 4 neighbours (oxygen forms two hydrogen
bonds and each hydrogen atom in the molecule takes part in one hydrogen bond
with another water molecule). Measuring the heat of evaporation (40 kJ mol−1),
we can estimate the energy of interaction of water molecules (see Fig. 3.2), i.e.,
40 kJ/(4NA) = 3.2 × 10−20 J = 0.1 eV (we divide by 4, to take into account the
number of neighbours of a molecule). We notice by chance that the energy of in-
termolecular interactions is much larger than the gravitational energy or the kinetic
energy of molecules in water vapour (see the previous two exercises).

2.4 The mass of 1 mol of argon amounts to M = 40 g. We have �h = 6 kJ mol−1,
hence, to evaporate the mass m = 40 g of argon, we need

Q = m

M
�h = 40 g

40 g mol−1
× 6 kJ mol−1 = 6 kJ.
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Now we want to find the energy of interaction between argon atoms which follows
from this value of Q. We calculate it in a similar way as in the previous exercise,
i.e., 6 kJ/12NA = 0.17 × 10−20 J ≈ 0.005 eV (we divide by 12, to take into ac-
count the number of neighbours of a single argon atom). The number of the closest
neighbours of one atom, i.e., the atoms that are sufficiently close to the given atom
to interact with it, follows from the local structure of a substance (arrangement of
atoms or molecules in space). Argon at low temperature forms a crystalline structure
in which each argon atom is surrounded by 12 closest neighbours. Water molecules
interact with one another almost 20 times stronger than argon atoms. The inter-
actions between argon atoms are weak because they result from the interaction of
induced electric dipoles.

2.5 This exercise allows us to estimate how much the energy of molecular inter-
actions differs from the energy contained in chemical bonds that binds atoms in a
molecule. The heat of combustion amounts to �h = 400 kJ mol−1. The molar mass
of carbon M = 12 g mol−1, and the mass used for the combustion m = 12 g, hence,
the amount of heat given off during the combustion amounts to

Q = m

M
�h = 12 g

12 g mol−1
× 400 kJ mol−1 = 400 kJ.

The reaction of combustion has the following form:

C + O2 → CO2.

In this reaction, the double bond between two oxygen atoms is broken and two
double bonds between two oxygen atoms and one carbon atom are formed. Due
to the reconstruction of the chemical bonds, 400 kJ of heat per mole of carbon is
given off. By comparison with the previous source of energy, we can see that the
energy hidden in chemical bonds, i.e., in the electronic structure of molecules and
interactions between negative electrons and positive nuclei of atoms, is tens of times
larger than the energy of intermolecular interactions in a liquid (cf. the previous
exercises).

2.6 Protons and neutrons are bound in the atom nuclei through interactions called
the nuclear or strong interactions. The energy of nuclear interactions is released
inside the sun at a temperature of millions degrees centigrade. Hans Bethe (1906–
2005), a great physicist and a Nobel prize winner, was the first to propose these
interactions as a source of the solar energy. A cycle of nuclear reactions inside the
sun can be presented in short in the form of one nuclear reaction:

4 1H + 2e → 4He + 2ν + 6γ.

Four hydrogen nuclei (protons) and two electrons form one helium nuclei, which
is composed of two protons and two neutrons, and some energy is released in the
form of two neutrinos (ν) and six photons in the range of gamma-rays. The energy
released in this nuclear reaction amounts to about 26 MeV, which gives 26 MeV/4 =
6.5 MeV per each hydrogen atom used in the reaction. Thus, in the reaction of 1 mol
of protons (1H), the energy

�U = 6.022 × 1023 × 6.5 × 106 × 1.6 × 10−19 J = 6.26 × 1011 kJ
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is released. Due to the nuclear synthesis, 1.5 × 109 times more heat is released than
during carbon combustion. Construction of a device for a controllable thermonu-
clear synthesis would give the mankind practically inexhaustible source of energy
and allow to achieve a great leap forward.

2.7 We make use of the Einstein formula. The speed of light in vacuum c ≈
300 000 km s−1. Annihilation changes the whole mass into the energy of photons.
The mass to be changed into pure energy amounts to m = 12 g. We calculate the
energy contained in 12 g of carbon:

E = mc2 = 12 × 10−3 kg × 9 × 1016 m2 s−2 = 1.08 × 1012 kJ mol−1.

Thus, the annihilation of 1 mol of carbon provides almost 1010 times more energy
than its combustion. Possibility of getting such a process under control would give
the mankind the greatest access to energy resources.

2.8 We begin with writing down the parameters of the initial and final equilibrium
states. In the initial state, 1 mol of water vapour, of the mass m = 18 g and density
ρi = 10−3 g cm−3, occupies the volume Vi = m/ρi = 18 × 103 cm3. In the final
state, liquid water has the same mass, and its density ρf = 1 g cm−3, hence, the
final volume Vf = m/ρf = 18 cm3. Thus, the change in the volume amounts to

�V = Vf − Vi = 18 cm3 − 18000 cm3 = −17982 cm3.

The change is negative, since the volume in the final state is smaller than the volume
in the initial state.

2.9 In the initial state, we have separate compounds N2 and H2, and their mole
numbers are nN2 = 1 and nH2 = 3. The total mole number in the initial state is

ni = nH2 + nN2 = 1 + 3 = 4.

In the final state, we have only NH3, and its mole number is nNH3 = 2, hence, the
final mole number is

nf = nNH3 = 2.

Note that in equilibrium, we would have a mixture of three compounds in the final
state, but here we ignore this fact and assume that all reactants have been used up
in the reaction, giving a pure product. The total mole number in the system has
changed by

�n = nf − ni = 2 − 4 = −2.

The total mole number has decreased by 2. The mole number of NH3 has increased
by 2, the mole number of H2 has decreased by 3, and the mole number of N2 has
decreased by 1.

2.10 In the initial state, we have V1i = 100 L, n1i = 3 + 4 + 1 = 8 mol in vessel
1, and V2i = 100 L, n2i = 5 + 2 + 1 = 8 in vessel 2. In the final state, we have
Vf = V1i + V2i = 200 L and nf = n1i + n2i = 16 mol in the fused vessels.
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2.11 The internal energy, volume and mole number are extensive parameters, thus,
in the final state, after the fusion of the vessels, we have the following values of the
state parameters: Uf = 4U , Vf = 4V , nf = 4n (cf. Fig. 2.4).

2.12 The heat given off by a man amounts to Q = 2 000 kcal = 8368 kJ. A day and
night have t = 24 × 60 × 60 s. Dividing a daily consumption of energy by time, we
get the power, i.e., Q/t = 96.85 J s−1 = 96.85 W. It means that a man consumes
approximately the same amount of energy as a 100 W bulb. Lavoisier compared
the heat of carbon combustion with the heat given off by living beings and with
the amounts of carbon dioxide and water produced. His study became a basis for
establishing of a detailed energetic balance of the human organism.

2.13 Water evaporates too quickly and its density is too small (1 g cm−3), to be
a good working substance in the barometer. It is easy to calculate how high the
barometer would have to be if we used flaxseed oil (density ρoil = 0.94 g cm−3)
instead of mercury, to measure atmospheric pressure. The density of mercury ρHg =
13.6 g cm−3. First, we measure atmospheric pressure p, using flaxseed oil in the
barometer, and then we measure p with the mercury barometer. Since the liquid
density is different in each case, the height of the liquid column is also different.
We calculate this difference, using the formula for the pressure measured with the
barometer:

p = ρoilghoil = ρHgghHg.

Since hHg = 760 mm at the pressure of 1 atm, we get

hoil = ρHg

ρoil
hHg = 13.6

0.94
× 760 mm = 10995.7 mm ≈ 11 m.

As we can see, the oil barometer would have the height of 11 m and no doubt it
would not be a very practical device.

2.14 The pressure in a car tyre amounts to about 2 atm, and a car weighing 1 ton
stands on four wheels. In a mountain bicycle, we pump the wheels up to 4 atm. The
pressure at the depth of 1000 km amounts to about 250 000 atm. As one can see, the
question is not correctly formulated, as in order to say that something is small or
large we have to compare it with other things. No quantity exists that could be said
to be large or small in itself, as Immanuel Kant might have said.

Let us calculate the force acting on our bodies. First, we have to estimate the
area of the body, A. We assume it to be equal to 2 m2. By definition, the force is
the product of p and A, hence, F = pA = 101325 N m−2 × 2 m2 ≈ 200000 N. It
means that air acts on the body with a force corresponding to the weight of 20 ton
(1 kG ≈ 10 N). It is really a lot! We do not feel it because the pressure of our blood
and other body fluids is exactly the same as atmospheric pressure, in accord with
mechanical equilibrium, i.e., pbody = p. If the external pressure would fall down to
zero our bodies would burst due to the internal pressure, the blood would boil and
partially evaporate (the boiling point decreases with lowering of the pressure) and
the remaining blood and body fluids would freeze, because they would give the heat
off to the vapour causing their temperature to fall below the freezing point.
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Fig. S2.1 To draw a liquid
with a straw, we have to
produce the underpressure
�p with the mouth

Fig. S2.2 To lift the lid, a
sailor would have to lift a
whole column of water above
the lid. When the sluice-gate
is filled with water the
pressure above and below the
lid is the same and equal to
p + ρgh

2.15 The liquid must rise 20 cm above its surface in the glass, to reach the mouth.
The liquid in the glass is at atmospheric pressure p, and the pressure above the
liquid in the straw amounts to p0 < p. From the balance of forces, it follows that
to make the liquid (its density ρ = 1 g cm−3) in the straw rise to the level h, the
pressure difference �p = p − p0 must be equal to (see Fig. S2.1):

�p = ρgh = 1 g cm−3 × 9.81 m s−2 × 20 cm = 1962 Pa.

This underpressure we have to produce in the straw, to draw the liquid into the
mouth. The pressure difference is about 50 times smaller than atmospheric pressure.

2.16 A column of water, of the height h = 10 m, presses on the lid (Fig. S2.2). It
exerts the pressure

p0 = ρgh = 103 kg m−3 × 9.81 m s−2 × 10 m = 9.81 × 104 N m−2.

Since the lid area amounts to A = 2 m2, the total force is equal to

F = p0A = 9.81 × 104 N m−2 × 2 m2 = 19.62 × 104 N.

This is the force the sailor has to use to lift the lid (we neglect the weight of the lid).
It is about 20 ton, which is not surprising, since lifting the lid, the sailor lifts at the
same time a column of water 10 m in height. If the sluice-gate is filled with water,
the pressure on both sides of the lid is the same and then the force needed to lift the
lid is equal to its weight minus its buoyancy, which is about 10–20 kg. This is why
the sluice-gate must be filled with water before the access door is opened.

2.17 We have to invert relation (2.18) between the Fahrenheit and Celsius scale:

tF /◦F = 9

5
tC/◦C + 32,
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hence

tC/◦C = 5

9
(tF /◦F − 32).

The temperature of 0 ◦F corresponds to −17.8 ◦C (the lowest temperature of su-
percooled water obtained by Fahrenheit in his laboratory), 70 ◦F corresponds to
21.1 ◦C (room temperature), and 451 ◦F corresponds to 232.8 ◦C (the autoignition
temperature of paper and the title of the famous sf novel by Ray Bradbury).

2.18 The Celsius and Kelvin scales are related to each other with the formula

T/K = tC/◦C + 273.15,

hence, tC = −273.15 ◦C corresponds to T = 0 K, the absolute zero temperature,
unattainable experimentally.

2.19 We know that 0 K corresponds to −273.15 ◦C. Converting to the Fahrenheit
scale, we get −459.67 ◦F.

2.20 From the expression

tC/◦C = 5

9
(tF /◦F − 32),

we get tC = 37.8 ◦C. The body temperature of a healthy man amounts to 36.6 ◦C,
which means that Fahrenheit calibrated his thermometer, measuring the temperature
of a sick person. In general, it is not a good idea to use living organisms to calibrate
thermometers. For instance, the temperature of the human body can vary by even a
few degrees, depending on the condition of the organism. It means that if we cali-
brate the thermometer one day we can get a result which differs by a few degrees
from the result obtained another day. Therefore, the calibration of thermometers is
usually based on reproducible phenomena, which occur always at the same temper-
ature, such as coexistence of the vapour, liquid and solid of a pure substance at its
triple point. At the triple point of water (water vapour, liquid water and ice coex-
ist), the temperature and pressure amount always to 273.16 K (0.01 ◦C) and 611 Pa
(4.6 torr), respectively.

2.21 We take a body with the characteristics corresponding to the perfect blackbody
and put it into a mixture of ice, liquid water and water vapour (the triple point of
water). Then we measure the electromagnetic radiation emitted by the body and use
the formula

U = γV T 4,

where the internal energy U is proportional to the intensity of radiation. In this
way, we determine the quantity U0 = U(T0 = 273.16) K. To determine the given
temperature T , we use the relation between T and U , hence

T = 273.16 K

(
U

U0

)1/4

.
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2.22 The internal energy per mole for the system of the internal energy U and mole
number n is given by

u = U

n
.

When we join together m identical systems, each of the internal energy U and mole
number n, we obtain a composite system of the internal energy mU and mole num-
ber mn, since the internal energy and amount of substance are extensive quantities.
The internal energy per mole of the composite system amounts to

mU

mn
= U

n
= u,

thus, it does not depend on the size of the composite system. It has the same value
for the system composed of m subsystems and for each of the subsystems.

2.23 The molar mass of water amounts to M = 18 g mol−1. The volume V1 =
18 cm3 contains the mass

m1 = V1ρ = 18 g,

hence, the mole number of water amounts to

n1 = m1

M
= 1 mol.

For the second vessel, we find m2 = 36 g and n2 = 2 mol. The molar density in both
vessels amounts to

ρn = n1

V1
= n2

V2
= 1

18
mol cm−3.

The total volume after the fusion:

V = V1 + V2 = 54 cm3

and the total mole number:

n = n1 + n2 = 3,

hence, for the molar density, we get

ρn = n

V
= 1

18
mol cm−3.

The molar density is an intensive quantity, since it does not depend on the size of
the system. The volume and amount of substance are extensive quantities. The mass
density ρ is an intensive quantity, because

ρ = m

V
= nM

V
= Mρn.

2.24 We denote by v the volume occupied by 1 mol of water, i.e., its molar volume.
It is obtained from the formula

v = M

ρ
= 18 cm3 mol

−1
.
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To determine the volume per molecule, vm, we divide v by NA, which gives

vm = v

NA

= 18

6.022 × 1023
cm3 ≈ 3 × 10−23 cm3.

We can express this volume, using 1 Å = 10−8 cm as a unit of length, which corre-

sponds roughly to the atom size. We obtain vm = 30 Å
3
. We can estimate the linear

size of the molecule, lm, assuming that vm = l3
m, which gives lm ≈ 3 Å. In reality, the

size of water molecule amounts to 2.76 Å. Liquids are very dense and the crowd of
molecules resembles the crowds of people travelling in Tokyo by underground dur-
ing the rush-hour, when people almost seat on one another. In a liquid, one molecule
touches other molecules and altogether they fill up the space rather closely.

2.25 We express V for the ideal gas as a function of T , p and n:

V (T ,p,n) = nRT

p
.

According to the definition of an infinitesimal change of a state function, dV de-
pends on dp and dT as follows:

dV = V (T + dT ,p + dp,n) − V (T ,p,n) =
(

∂V

∂T

)
p,n

dT +
(

∂V

∂p

)
T ,n

dp.

Since (
∂V

∂T

)
p,n

= nR

p
,

(
∂V

∂p

)
T ,n

= −nRT

p2
,

we get

dV = nR

p
dT − nRT

p2
dp.

2.26 For a monatomic van der Waals gas, we have

U(T ,V,n) = 3

2
nRT − an2

V
.

The increase in the internal energy at constant mole number amounts to

dU = U(T + dT ,V + dV,n) − U(T ,V,n) =
(

∂U

∂T

)
V,n

dT +
(

∂U

∂V

)
T ,n

dV.

Since (
∂U

∂T

)
V,n

= 3

2
nR,

(
∂U

∂V

)
T ,n

= an2

V 2
,

we get

dU(T ,V,n) = 3

2
nRdT + an2

V 2
dV.
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2.27 The relation between the pressure and temperature of the photon gas is

p = 1

3
γ T 4,

hence, we get an infinitesimal increase in the pressure

dp = p(T + dT ) − p(T ) = ∂p

∂T
dT .

Since

∂p

∂T
= 4

3
γ T 3,

we find that

dp = 4

3
γ T 3dT .

2.28 For d̄ω = ωxdx + ωydy, we have to check if ∂ωx/∂y = ∂ωy/∂x. In case (1),
we have

∂ωx

∂y
= 6xy2,

∂ωy

∂x
= 6xy2,

thus, the equality of the derivatives is satisfied, which means that d̄ω = df , where
f is a function of x and y. It is easy to verify that f (x, y) = x2y3 + const. In case
(2), we have

∂ωx

∂y
= 4xy3,

∂ωy

∂x
= 2xy2,

thus, the derivatives differ. No function f exists, whose differential df would be
equal to d̄ω.

2.29 We consider a differential form d̄ω = ωx(x, y)dx +ωy(x, y)dy, defined in the
xy plane, hence

∫ f

i

d̄ω =
∫ f

i

[
ωx(x, y)dx + ωy(x, y)dy

]
,

where the path linking the initial point with the final point is to be defined. Both
paths of integration are shown in Fig. S2.3. In case (1), we have

∫ f

i

d̄ω =
∫ 1

0
ωx(x,0)dx +

∫ 1

0
ωy(1, y)dy,

since we integrate first along the x axis, at y = 0, and then along the y axis, at x = 1.
In the previous exercise, we showed that d̄ω = xy4dx +x2y2dy is not a function dif-
ferential, hence, we substitute ωx = xy4 and ωy = x2y2. The first integral vanishes,
since ωx(x,0) = 0. In the second integral, ωy(1, y) = y2, hence

∫ f

i

d̄ω =
∫ 1

0
y2dy = 1

3
.
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Fig. S2.3 Two paths linking
the point (0,0) with the point
(1,1)

In case (2), we have to substitute y = x and dy = dx, hence∫ f

i

d̄ω =
∫ 1

0

[
ωx(x, x) + ωy(x, x)

]
dx =

∫ 1

0

(
x5 + x4)dx = 11

30
.

Thus, we have shown that the value of the integral depends on the path between the
points i and f .

Now we integrate along the same paths the differential df = 2xy3dx +3x2y2dy,
where f (x, y) = x2y3 + const. For path (1), we get∫ f

i

df =
∫ 1

0
3y2dy = 1,

and for path(2), we get ∫ f

i

df =
∫ 1

0
5x4dx = 1.

In both cases, the value of the integral is the same, equal to �f = f (1,1) −
f (0,0) = 1.

Below we give a general method of integration of differential forms d̄ω. We
restrict ourselves to two variables but it is easy to generalize the result. A path of
integration is defined by a certain curve, which can be expressed in the parametric
form: τ �→ (x(τ ), y(τ )), where the parameter τ changes from the initial value τi

to the final value τf . The path may consist of several parts, as in case (1), but we
assume for simplicity that the curve is smooth. If it is not, then we integrate along
each smooth part of the curve and add the integrals. The parameter τi corresponds
to the initial point (xi, yi), where xi = x(τi), yi = y(τi), and analogously for the
final point (xf , yf ). The integral of d̄ω along the curve is defined as follows:

∫ f

i

d̄ω =
∫ τf

τi

[
ωx

(
x(τ), y(τ )

)dx

dτ
+ ωy

(
x(τ), y(τ )

)dy

dτ

]
dτ.

Thus, we have reduced the problem to the integration of a function of one variable.
Note that if d̄ω = df , then

∫ f

i

df =
∫ τf

τi

(
∂f

∂x

dx

dτ
+ ∂f

∂y

dy

dτ

)
dτ =

∫ τf

τi

df (x(τ), y(τ ))

dτ
dτ

= f
(
x(τf ), y(τf )

) − f
(
x(τi), y(τi)

) = f (xf , yf ) − f (xi, yi),
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which means that the value of the integral depends only on the initial and final
points, and not on the path linking these points.

Finally, we notice that if the curve can be presented as a set of points (x, y(x)),
then τ = x and ∫ f

i

d̄ω =
∫ xf

xi

[
ωx

(
x, y(x)

) + ωy

(
x, y(x)

)dy

dx

]
dx.

2.30 We use the equation of state of the ideal gas. In general, we should use an
equation of state which describes gases better, e.g., the van der Waals equation of
state. Then, however, we would have to know which gas it is, and find the parameters
a and b for this gas in the tables. Since this information is not provided, we assume
the equation of state independent of the gas, i.e., the ideal gas equation of state:

pV = nRT .

The initial state: Vi = 120 L, Ti = (273.15 + 25) K = 298.15 K, ni = 5 mol.
The final state: Vf = 120 L = 120 × 10−3 m3, Tf = 298.15 K, pf = 0.5 atm.

Substituting the parameters of the final state into the equation of state, we get the
final value of the mole number nf , i.e.,

nf = pf Vf

RTf

= 0.5 × 101325 N m−2 × 120 × 10−3 m3

8.314 J K−1 mol−1 × 298.15 K
= 2.453 mol,

hence

�n = nf − ni = 2.453 − 5 = −2.547 mol.

�n is negative because the mole number has decreased; 2.547 mol of the gas has
escaped from the vessel.

2.31 From the equation of state of the ideal gas, we get

p = nRT

V
= 1 mol × 8.314 J mol−1 K−1 × 298 K

10−4 m3
≈ 2.48 × 107 Pa.

The internal energy of a two-atomic gas is given by

U = 5

2
nRT = 2.5 × 1 mol × 8.314 mol−1 K−1 × 298 K = 6193.9 J.

2.32 The van der Waals equation of state describes nitrogen better than the ideal
gas equation of state. Performing calculations for both equations of state, we want
to learn how good an approximation to a real gas the ideal gas is. From the van der
Waals equation of state, we get

p = nRT

V − nb
− an2

V 2
= 8.314 J K−1 × 298 K

10−4 m3 − 3.85 × 10−5 m3
− 0.1358 J m3

10−8 m6

≈ 4.029 × 107 Pa − 1.358 × 107 Pa ≈ 2.67 × 107 Pa.

Thus, the pressure of the ideal gas differs by a few percent from the pressure ob-
tained from the van der Waals equation of state. We notice, however, that this good
agreement is fortuitous. It results from partial cancellation of two large terms in the
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van der Waals equation of state. Note that when the molar volume v = V/n is small,
i.e., comparable with the constant b, then the first term in the van der Waals equation
is large and dominates over the second term.

To calculate the internal energy, we use the expression

U = 5

2
nRT − an2

V
= 6193.9 J − 1358 J ≈ 4836 J. (S2.1)

The first term is the same as for the ideal gas. This part of the internal energy comes
from the kinetic energy of N2 molecules. The second term comes from the potential
energy of intermolecular attraction. At large densities and low temperatures, its ab-
solute value becomes large compared to the first term, which leads to condensation
of the gas.

2.33 When the gas density is small, as in this case, we obtain practically the same
result for the pressure and internal energy, using the ideal gas and van der Waals
equations of state. In the previous exercise, we assumed the volume V = 0.1 L,
which corresponds to the molar density of 10 mol L−1. In the present case, the mo-
lar density amounts only to 0.001 mol L−1. We calculate the pressure and internal
energy of the gas, using the van der Waals equation:

p = nRT

V − nb
− an2

V 2
= 8.314 J K−1 × 298 K

1 m3 − 3.85 × 10−5 m3
− 0.1358 J m3

1 m6

≈ 2477.67 Pa − 0.1358 Pa ≈ 2477.53 Pa,

U = 5

2
nRT − an2

V
= 6193.93 J − 0.1358 J ≈ 6193.79 J.

For the ideal gas, we get p = 2477.57 Pa and U = 6193.93 J. Thus, in the case of
small molar densities, the corrections coming from intermolecular interactions are
very small and can be neglected.

2.34 We use the expression for the internal energy of the photon gas: U = γV T 4,
where γ = 7.56 × 10−16 J m−3 K−4. For T = 298 K, we get

U = 7.56 × 10−16 J m−3 K−4 × 1 m3 × 2984 K4 ≈ 6 × 10−6 J,

and for T = 400 K, we get U ≈ 2 × 10−5 J. The pressure is determined from the
expression: p = γ T 4/3 = U/(3V ). For T = 298 K, we get p ≈ 2 × 10−6 Pa, and
for T = 400 K, p ≈ 6.5 × 10−6 Pa.

Therefore, the internal energy of radiation contained in the photon gas is very
small compared to the internal energy of the ideal gas, and the same concerns the
pressure. The photon gas can be used to a fast transfer of energy (in lasers). We can
imagine that the energy E = 10−5 J is transferred during the time t = 1 fs = 10−15 s
(femtosecond lasers). It requires the power P = E/t = 1010 W = 10 GW, which is
the power generated by a big power station. For instance, the Bełchatów power
station in Poland, generating the power of 4 GW, is the biggest conventional power
station in Europe (it uses brown coal as fuel). The biggest water power stations in
Brasil or USA generate the power of about 10 GW. Thus, to generate great power
from a small amount of energy, the energy has to be delivered in a very short time.
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2.35 For the ideal gas, we have pV = nRT and U = f nRT/2, where f is the
number of degrees of freedom per molecule (f = 3 for one atom), hence

p(U,V,n) = 2U

f V
= 2mU

f mV
= p(mU,mV,mn).

In the case of the van der Waals gas, we determine T from the expression for the
internal energy, i.e.,

T = 2

f nR

(
U + an2

V

)
,

and then substitute it into the expression for the pressure, hence

p = 2U

f (V − nb)
+ 2an2

f V (V − nb)
− an2

V 2
.

Using the last formula we verify that p(mU,mV,mn) = p(U,V,n).

2.36 For the ideal gas V (T ,p,n) = nRT/p, hence

− 1

V

(
∂V

∂p

)
T ,n

= nRT

Vp2
= 1

p
.

In the case of the van der Waals gas, to find the relation V = V (T ,p,n), the equation
of state is to be written in the form of a third order equation for V , i.e.,

pV 2(V − nb) − nRT V 2 + an2(V − nb) = 0,

and then the root of this equation is to be determined.1 However, it is more conve-
nient to calculate the derivative(

∂p

∂V

)
T ,n

= − nRT

(V − nb)2
+ 2an2

V 3
,

hence, we get

− 1

V

(
∂V

∂p

)
T ,n

=
[

nRT V

(V − nb)2
− 2an2

V 2

]−1

.

In the case of the photon gas, the mole number n is not a thermodynamic variable,
and from the equation of state p = γ T 4/3, it follows that (∂p/∂V )T = 0, thus,
(∂V/∂p)T is not well defined. However, we can express V as a function of U and
p, i.e., V = U/(3p), hence

− 1

V

(
∂V

∂p

)
U

= 1

p
.

Thus, we obtain the same result as for the ideal gas, for which we differentiated
at constant temperature. Note that from the equations of state for the ideal gas:
pV = nRT and U = f nRT/2, the relation V = 2U/(fp) follows, hence

− 1

V

(
∂V

∂p

)
U

= 1

p
.

1The equation has only one real root at sufficiently high temperatures.
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2.37 For the ideal gas,

1

V

(
∂V

∂T

)
p,n

= nR

pV
= 1

T
.

In the case of the photon gas, fixing pressure, we also fix temperature. Therefore,
the above expression does not make sense. However, we can calculate

1

V

(
∂V

∂U

)
p

= 1

3Vp
= 1

U
.

2.38 For the ideal gas, (
∂U

∂T

)
V,n

= f

2
nR,

and we obtain the same result for the van der Waals gas. In the case of the photon
gas, we get (

∂U

∂T

)
V

= 4γV T 3.

2.39 We make an assumption that the atmosphere is in thermodynamic equilib-
rium. This is not quite correct, since neither the temperature nor pressure of the
atmosphere are constant, and also a macroscopic flow of air exists. Nevertheless,
the assumption is good enough to estimate the amount of oxygen in the atmosphere.
We calculate the volume V occupied by air. It is the volume of a spherical layer
whose internal radius amounts to R = 6500 km (radius of the earth), and the ex-
ternal radius is equal to R + h, where h = 10 km. The temperature amounts to
T = 273.15 + 14 K, and the pressure p = 1 atm. Since h � R, we get

V = 4

3
π(R + h)3 − 4

3
πR3 ≈ 4πR2h ≈ 5.3 × 1018 m3.

The mole number is determined from the ideal gas equation of state:

n = pV

RT
= 101325 Pa × 5.3 × 1018 m3

8.314 J mol−1 K−1 × 287.15 K
≈ 2 × 1020 mol.

Since oxygen makes 21 % of the whole, the amount of oxygen in the atmosphere is
equal to nO2 = 0.21n ≈ 0.4 × 1020 mol. The amount of 0.5 × 1016 mol of oxygen is
used up yearly by living organisms, which means that even if the oxygen supply was
not renewed it would disappear from the atmosphere only after nO2/0.5 × 1016 =
8000 years. Obviously, if the concentration of oxygen fell well below 21 % we
would have serious problems with breathing. After a few hundred years, we would
begin to feel the lack of oxygen in the atmosphere.

2.40 The data: R = 700 000 km, T = 6000 K, c = 3 × 108 m/s, γ = 7.56 ×
10−16 J K−4 m−3. Using the expression for u, we obtain the power per unit area,
i.e.

I = uc

4
= γ T 4c

4
.
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Substituting the numbers, we get

I = 7.56

4
× 10−16 J K−4 m−3 × 3 × 108 m s−1(6 × 103 K

)4 ≈ 7 × 107 W m−2.

The total power radiated from the sun surface, of the area A = 4πR2, amounts to

P = AI = 4π
(
7 × 108 m

)2 × 7 × 107 W m−2 ≈ 4 × 1026 W.

It is an unimaginably great number. By comparison, the total energy consumption
in 2008 amounted to 4.74 × 1020 J ≈ 132 000 TWh. With this level of energy con-
sumption, the energy radiated by the sun during 1 second only would be enough for
us for 840 000 years.

Exercises of Chapter 3

3.1 The process takes place at constant pressure p, hence, the heat absorbed by the
system due to the change in the temperature from Ti to Tf amounts to

Q = ncp(Tf − Ti) = ncp�T,

provided that the molar heat capacity at constant pressure, cp , does not depend on
temperature. Here we consider a monatomic ideal gas, for which cp = 5R/2. The
temperature difference follows from the equation of state pV = nRT :

�T = p�V

nR
,

hence

Q = 5

2
p�V.

This result can also be derived directly from the first law of thermodynamics: Q =
�U − W . The change in the internal energy of the gas amounts to

�U = 3

2
nR�T = 3

2
p�V,

and the work done on the gas in an isobaric process is equal to W = −p�V , hence,
Q = (5/2)p�V . Substituting the data: p = 1 bar and �V = 30 L, we get

Q = 2.5 × 105 Pa × 30 × 10−3 m3 = 7500 J.

3.2 In this case, the external pressure pext is fixed, but the gas pressure changes
during the process from the initial value pi = 2 atm to the final value pf = pext =
1 atm. The process is not quasi-static, thus, it is not reversible. However, if the
system performs work on a reversible source of work, then we can calculate the
work in the same way as in the previous exercise, i.e., W = −pext�V . The change
in the volume is obtained from the equation of state pV = nRT as follows:

�V = Vf − Vi = nR

(
Tf

pext
− Ti

pi

)
.
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Fig. S3.1 Volume of the
vessel doubles at constant
temperature and the pressure
of the ideal gas decreases by a
factor of two

The change in the internal energy of the gas is equal to �U = (3/2)nR(Tf − Ti),
hence

Q = �U − W = nR

[
3

2
(Tf − Ti) +

(
Tf − Tipext

pi

)]
,

where n = 5, Ti = 298.15 K, Tf = 293.15 K. Substituting the data, we get �U =
−311.8 J and W = −5989.2 J, hence, Q = 5677.4 J. Thus, the system performs
work (W < 0) and absorbs heat from the surroundings (Q > 0).

3.3 The system considered is shown in Fig. S3.1. Since the subsystems are in equi-
librium, the gas pressure must be the same, hence

pV (1) = n(1)RT ,

pV (2) = n(2)RT .

The temperature and mole numbers in the subsystems do not change, thus

piV
(1)
i = pf V

(1)
f ,

piV
(2)
i = pf V

(2)
f ,

hence

piVi = pf Vf ,

where Vi and Vf denote the total volume of the system in the initial and final states.
Thus, we have

V
(1)
f

V
(1)
i

= V
(2)
f

V
(2)
i

= pi

pf

= Vf

Vi

= 2.

The work done by each subsystem in the isothermal process amounts to

W(1) = −n(1)RT ln
V

(1)
f

V
(1)
i

= −n(1)RT ln 2,

W(2) = −n(2)RT ln
V

(2)
f

V
(2)
i

= −n(2)RT ln 2.
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The work done by the whole system amounts to

W = W(1) + W(2) = −nRT ln 2 = −nRT ln
Vf

Vi

,

where n denotes the total mole number of the gas. We know that n(1) = 10, and n(2)

is determined from the relation

n(2)

n(1)
= V

(2)
i

V
(1)
i

= 1

5
,

hence n(2) = 2 mol. Substituting the data, we get

W(1) = −15741 J, W(2) = −3148 J, W = −18889 J.

The internal energy of the subsystems and whole system does not change, since
T = const and we consider the ideal gas, thus

Q = �U − W = −W = 18889 J.

3.4 Due to the condition of mechanical equilibrium, the gas pressure is the same
in each subsystem. The temperature is also the same, since the system is in thermal
equilibrium with the surroundings, hence

piV
(j)
i = n(j)RTi,

pf V
(j)
f = n(j)RTf ,

where j = 1,2,3 numbers the subsystems. Summing up over all subsystems, we get

piV = nRTi,

pf V = nRTf ,

where n denotes the total number of moles of the gas in the system, thus

Ti

pi

= Tf

pf

,

hence it follows that

V
(j)
f = n(j)R

Tf

pf

= n(j)R
Ti

pi

= V
(j)
i .

The gas in the subsystems does not perform any work because the volume does not
change. The mole number for each subsystem is determined from the equation of
state

n(j) = piV
(j)
i

RTi

.

The change in the internal energy of each subsystem amounts to

�U(j) = 3

2
n(j)R(Tf − Ti) = 3

2
piV

(j)
i

(
Tf

Ti

− 1

)
.
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Since the system performs no work, the heat Q absorbed by the system is equal to
the change in its internal energy, i.e.

Q = �U =
3∑

j=1

�U(j) = 3

2
piV

(
Tf

Ti

− 1

)
.

Therefore, it does not matter if we heat up subsystems, which are thermally insulated
from one another but remain in thermal contact with the surroundings, or if we heat
up the whole system of the volume V = V (1) + V (2) + V (3).

3.5 We solve this problem in a similar way as in Exercise 3.3. The process is isother-
mal and the pressure is the same in each subsystem. From the isotherm equation
pV = const, it follows that

pf V
(j)
f = piV

(j)
i ,

for each subsystem j . Since V
(1)
f /V

(1)
i = 4, we have

V
(j)
f

V
(j)
i

= pi

pf

= 4

for all subsystems. The work done in a reversible isothermal process by the j th
subsystem amounts to

Wj = −n(j)RT ln
V

(j)
f

V
(j)
i

= −n(j)RT ln 4.

To calculate the work done by the whole system, we sum up over all subsystems,
hence

W =
3∑

i=1

W(i) = −nRT ln 4,

where n is the total mole number of the gas in the system. Since we know the initial
volume of each subsystem, hence, also the total volume (Vi = 16 L), the initial
pressure (pi = 1 atm) and the temperature T = 273.15 K, we can determine n from
the equation of state

n = piVi

RT
.

Substituting it into the expression for the work, we get

W = −piVi ln 4 = −101325 Pa × 16 × 10−3 m3 ln 4 ≈ −2247 J.

We notice that actually the temperature is not needed in this exercise. The internal
energy does not change in the isothermal process, thus, the heat supplied to the
system Q = −W .

3.6 The gas expanding to the vacuum performs no work (W = 0), since the external
pressure pext = 0. The process is adiabatic, thus, by definition no heat is transferred
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between the system and surroundings (Q = 0), hence, the internal energy of the
system does not change either (�U = Q + W = 0). Since the internal energy in the
initial state, Ui , is the same as in the final state, Uf , we have

Uf = 3

2
nRTf = 3

2
nRTi − an2

Vi

= Ui,

where we have used the assumption that Vf = ∞. From the above equation, we
determine the change in the temperature

�T = Tf − Ti = − 2an

3RVi

.

Why does the temperature decrease when the van der Waals gas expands, even
though it performs no work? Attractive intermolecular interactions cause molecules
to slow down when they move away. Since the speed of molecules decreases, the
gas temperature, which is proportional to the average kinetic energy of molecules,
also decreases.

3.7 The work done against the constant external pressure pext amounts to W =
−pext�V , hence, the change in the internal energy in an adiabatic process is �U =
W = −pext�V . For 1 mol of the ideal gas, �U = 3R�T/2, hence, also the work
W = 3R�T/2. Comparing both expressions for W , we determine the change in the
volume:

�V = −3R�T

2pext
.

3.8 Since we consider a reversible adiabatic process, we can make use of the adiabat
equation: T V 2/3 = const, hence

Vf

Vi

=
(

Ti

Tf

)3/2

= 43/2 = 8,

for Tf = Ti/4. In this process, the volume has increased 8 times. The work done by
the gas is equal to the change in its internal energy, hence

W = �U = 3

2
nR(Tf − Ti) = −9

8
nRTi.

3.9 Substituting the temperature determined from the ideal gas equation of state,
T = pV/(nR), to the adiabat equation expressed in the variables T and V (see the
previous exercise), we obtain the adiabat equation in the variables p and V , i.e.,

pV 5/3 = const,

hence

pf

pi

=
(

Vi

Vf

)5/3

=
(

1

4

)5/3

≈ 0.1.

For the initial pressure pi = 1 bar, we get the final pressure pf ≈ 0.1 bar.
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Fig. S3.2 Evaporation of
water at the external pressure
pext. In the initial state, water
is a liquid, and in the final
state, we have water vapour.
Q is the heat supplied to
change liquid water into
vapour

Fig. S3.3 Synthesis of
ammonia occurs at the
pressure pext = 1 atm. As a
result of the reaction, the heat
Q = −92 kJ is given off to
the surroundings and the final
volume of the system is half
of the initial volume

3.10 The process of water evaporation at constant pressure is shown schematically
in Fig. S3.2. In the initial state, 1 mol of liquid water occupies the volume Vi =
18 cm3 and fills up the whole available space of the vessel. The pressure is constant
and equals pext = 1 atm. In the final state, only water vapour is present, which
occupies the volume Vf = 30.6 L. A change of 1 mol of liquid water into vapour
at the pressure of 1 atm requires supply of the heat Q = 40670 J. Moreover, when
liquid water evaporates it performs the work W against the external pressure pext =
1 atm, where

W = −pext(Vf − Vi).

The change in the internal energy of the system amounts to

�U = Q + W = Q − pext(Vf − Vi).

Substituting the data, we get

�U = 40670 J − 101325 Pa × (
30.6 × 10−3 − 18 × 10−6) m3 ≈ 37569 J.

Thus, the work done by the system is much smaller then the heat supplied.

3.11 The process considered is shown schematically in Fig. S3.3. The heat given
off in this reaction, Q = −92 kJ, comes from the energy of chemical bonds. Q < 0
since the system gives off the heat. In the energetic balance, we have to take into
account also the work done by (or on) the system due to the change in its volume.
All substances are treated as ideal gases. In the initial state, there are 3 mol of H2
and 1 mol of N2, which gives the total mole number ni = 4 mol. In the final state,
there are nf = 2 mol of ammonia (NH3). The temperature and pressure have the
same values in the initial and final states: T = 298 K and pext = 1 atm. The change
in the internal energy

�U = Q + W = Q − pext(Vf − Vi) = Q − RT (nf − ni),
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where we have used the ideal gas equation of state. Substituting the data, we get

�U = −92 × 103 J + 2 mol × 8.314 J K−1 mol−1 × 298 K ≈ −87 kJ.

3.12 In the initial state, we have two isolated systems with the total internal energy
U

(1)
i + U

(2)
i = 30 kJ. Their mole numbers are constant and equal to n(1) = 2 and

n(2) = 3, respectively. Both systems are isolated from the surroundings, thus, their
total internal energy does not change, hence, U

(1)
f + U

(2)
f = 30 kJ. The temperature

of the final equilibrium state is Tf . We determine Tf from the equation

U
(1)
f + U

(2)
f =

(
3

2
n(1) + 5

2
n(2)

)
RTf = 30 kJ,

hence

Tf = 30 kJ

10.5 mol × 8.314 J K−1 mol−1
≈ 343.65 K.

Then we calculate the internal energy of each system:

U
(1)
f = 3

2
n(1)RTf ≈ 8571 J,

U
(2)
f = 5

2
n(2)RTf ≈ 21429 J.

3.13 The total internal energy in the final state is the same as in the initial state,
hence

Ui = γV
(
T (1)4 + T (2)4) = Uf = 2γV T 4

f ,

and for the final temperature, we get

Tf =
(

T (1)4 + T (2)4

2

)1/4

.

3.14 The initial temperatures of the metal and water amount to T1i = 400 K and
T2i = 294 K. The final temperature of water and the metal immersed in it amounts
to Tf = 300 K. The mass of the metal and water is m1 = 1 kg and m2 = 0.3 kg,
respectively. For the change in their internal energy, we get

�U1 = c1m1(Tf − T1i ),

�U2 = c2m2(Tf − T2i ),

respectively, where c1 and c2 denote their specific heat. The SI derived unit of
the specific hit is J kg−1 K−1. The whole system, i.e., the metal and water, is iso-
lated from the surroundings, hence, �U1 + �U2 = 0, and we can determine the
ratio

c2

c1
= −m1(Tf − T1i )

m2(Tf − T2i )
.
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Substituting the data, we get

c2

c1
= 1 kg × 100 K

0.3 kg × 6 K
≈ 55.6.

Thus, the specific heat of water is 55.6 times bigger than the specific heat of the
metal. Substances of good cooling capabilities are those of high specific heat in the
given temperature range, which means that they are difficult to warm up. Evapora-
tion of a liquid can also be used for cooling. In the latter case, we choose substances
of high heat of evaporation.

3.15 Since the internal energy is an extensive quantity, we have

U(T ,V,n) = nu(T ,V/n) = nu(T , v),

where u denotes the molar internal energy, and v = V/n is the molar volume. For
n = 4, we have

U(T ,V,4 mol) = AT V 3 = AT (4v)3 mol3 = (4 mol)u(T , v),

hence, u(T , v) = BT v3, where B = 16A mol2 = 160 J mol2 K−1 cm−9, and

U(T ,V,n) = nu(T ,V/n) = BT
V 3

n2
.

3.16 This exercise is solved in a similar way as the previous one

U(T ,V,2 mol) = aV T 4 = (2 mol)avT 4 = (2 mol)u(T , v),

hence u(T , v) = avT 4, where a is independent of n. Thus, the expression U =
aV T 4 holds for any n.

3.17 The total energy transferred to the substance in the form of heat, i.e.,

Q = 12 V × 1 A × 3000 s = 36 kJ,

caused the substance temperature to increase by �T = 5.5 K. If we assume that in
this range of temperature, the heat capacity of the substance, C, is independent of
temperature, then we can calculate it from the formula: C = Q/�T ≈ 6545 J K−1.

3.18 Infinitesimal work performed by the gas is equal to d̄W ∗ = −d̄W = pdV ,
hence, in the process of isothermal expansion from the volume Vi to Vf > Vi , we
get

W ∗ = nRT

∫ Vf

Vi

(
1

V
+ n2B(T )

V 2

)
dV = nRT ln

Vf

Vi

− n2RT B(T )

(
1

Vf

− 1

Vi

)
.

The work done by the ideal gas amounts to W ∗ = nRT ln(Vf /Vi). At high temper-
atures B(T ) > 0, and the work done by the real gas is greater than in the case of the
ideal gas.

3.19 To calculate the work done by the gas, we integrate d̄W ∗ = pdV from the
initial volume Vi to the final volume Vf > Vi . For the van der Waals equation of
state, we get

W ∗ =
∫ Vf

Vi

(
nRT

V − nb
− an2

V 2

)
dV = nRT ln

(
Vf − nb

Vi − nb

)
+ an2

(
1

Vf

− 1

Vi

)
.
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The constants a and b are positive. The presence of a lowers the gas pressure in
relation to the ideal gas pressure, and the presence of b increases the gas pressure.
The same tendency holds for the work done by the gas. Then we expand the term
1/(V − nb) in a power series of nb/V :

1

V − nb
= 1

V (1 − nb/V )
= 1

V

[
1 + nb

V
+

(
nb

V

)2

+ · · ·
]
.

For V 	 nb, we have

1

V − nb
= 1

V (1 − nb/V )
≈ 1

V
+ nb

V 2
.

Substituting this approximation into the van der Waals equation of state, we get the
expression for the function B(T ) introduced in the previous exercise:

B(T ) = b − a

RT
.

The above approximation can be used when the molar volume of the gas, v = V/n,
is large compared to the parameter b. We notice also that B(T ) is negative at low
temperatures and positive at high temperatures.

3.20 We use the form of the internal energy differential at constant volume: dU =
ncvdT . Integrating this relation from the temperature Ti to Tf , we find the change
in the molar internal energy:

�u = uf − ui =
∫ Tf

Ti

cvdT = A(Tf − Ti) + 1

2
B

(
T 2

f − T 2
i

)
.

3.21 We proceed in the same way as in the previous exercise, hence

�u = uf − ui =
∫ Ti

Tf

cvdT = A(Tf − Ti) + 1

2
B

(
T 2

f − T 2
i

) + C

(
1

Tf

− 1

Ti

)
.

3.22 In this case, the heat capacity per unit volume is given, thus, dU = V cvdT ,
and

�U = Uf − Ui = V

∫ Ti

Tf

cvdT = V γ
(
T 4

f − T 4
i

)
.

3.23 To avoid damaging of the vessel, the maximum pressure obtained by heating
of the gas cannot exceed 100 atm, i.e., pf < 100 atm. From the equation of state,
we get

pi

Ti

= pf

Tf

,

hence, the final temperature must satisfy the inequality

Tf = pf Ti

pi

< 100Ti = 29800 K.
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The molar heat capacity at constant volume amounts to cv = 5R/2, and the mole
number n = piV/RTi . The heat to be delivered to warm up the gas from Ti = 298 K
to Tf = 29800 K amounts to

Q = 5

2
nR(Tf − Ti) = 5

2
piV

(
Tf

Ti

− 1

)
≈ 601.87 kJ.

Note that the maximum final temperature is much higher than the melting point of
any material on the earth. Therefore, it is not possible, in practice, to warm up the
gas in the vessel, to achieve the pressure of 100 atm.

3.24 In the initial state, Ui = 3niRT/2, and in the final state, Uf = 3nf RT/2. The
change in the internal energy caused by the reduction of the mole number �n =
nf − ni amounts to

�U = Uf − Ui = 3

2
RT �n.

3.25 As in the previous exercise, the change in the internal energy amounts to

�U = 3

2
RT �n.

The process occurs at constant pressure, hence, the work done in the process
amounts to

W = −p�V = −RT �n,

where we have used the equation of state pV = nRT . According to the first law of
thermodynamics, �U = Q + W + Z. The change in the internal energy at constant
temperature is related to the change in the mole number of the gas, hence, �U = Z,
from which it follows that

Q = −W = RT �n.

Since �n < 0, we have W > 0 and Q < 0, i.e., the work is performed on the system,
and the system gives off the heat.

Exercises of Chapter 4

4.1 The process considered is shown in Fig. S4.1. At the first stage, V = V1, hence
W1 = 0. The change in the temperature amounts to �T = V1(p2 − p1)/R, and the
internal energy changes by

�U1 = 3

2
V1(p2 − p1),

hence

Q1 = �U1 − W1 = 3

2
V1(p2 − p1).
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Fig. S4.1 Isochoric–isobaric
cycle

At the second stage, p = p2, the work amounts to

W2 = −p2(V2 − V1),

and the temperature changes by �T = p2(V2 − V1)/R, hence

�U2 = 3

2
p2(V2 − V1),

Q2 = �U2 − W2 = 5

2
p2(V2 − V1).

At the third stage, V = V3, W3 = 0 and

�U3 = 3

2
V2(p1 − p2),

Q3 = �U3 − W3 = 3

2
V2(p1 − p2).

At the fourth stage, we have p = p1,

W4 = −p1(V1 − V2),

�U4 = 3

2
p1(V1 − V2),

Q4 = �U4 − W4 = 5

2
p1(V1 − V2).

The process is a cycle, thus

�U = �U1 + �U2 + �U3 + �U4 = 0.

The total work

W = W1 + W2 + W3 + W4 = −(p2 − p1)(V2 − V1),

and the total heat

Q = Q1 + Q2 + Q3 + Q4 = �U − W = (p2 − p1)(V2 − V1).

Thus, the system performs work (W < 0) due to the heat absorbed.

4.2 The engine efficiency ηe is equal to the ratio of the work done by the engine,
W ∗ = −W , to the heat absorbed. In the cycle considered, the engine absorbs the
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Fig. S4.2 Carnot cycle

heat Q1 = (3/2)V1(p2 − p1) > 0 during the isochoric warming up of the gas, and
the heat Q2 = (5/2)p2(V2 − V1) > 0 during the isobaric expansion, hence

ηe = 2(p2 − p1)(V2 − V1)

3V1(p2 − p1) + 5p2(V2 − V1)
.

As we can see, the efficiency depends on the working substance used in the engine,
because the heat absorbed depends on the molar heat capacity. For instance, in the
case of a two-atomic ideal gas, the engine efficiency is smaller than in the case of a
monatomic gas.

4.3 The cycle can be a combination of isothermal, isobaric, adiabatic and isochoric
processes. Most common is the combination of isochoric or isobaric processes with
adiabatic processes, for instance, an adiabatic–isochoric cycle (Otto cycle). An in-
teresting combination is used in the jet engine, in which air flows through a combus-
tion chamber, and the cycle is not closed. It has two adiabatic stages and the stage
of combustion, which occurs at constant pressure.

4.4 The Carnot cycle is shown in Fig. S4.2. The changes in the entropy in the
isothermal processes at the temperatures T1 and T2 amount to �S = S2 − S1 and
−�S = S1 − S2, respectively. The heat absorbed by the system at T = T1 is equal
to Q1 = T1(S2 − S1), and the heat given off to the thermostat at T = T2 is equal to
Q2 = T2(S1 − S2). Since �U = 0 in a cyclic process, we have

�U = Q1 + Q2 − W ∗ = 0,

where W ∗ = −W is the work done by the system, hence

W ∗ = T1(S2 − S1) + T2(S1 − S2) = (T1 − T2)(S2 − S1), (S4.1)

which is the area of the rectangle shown in Fig. S4.2.

4.5 The change in the entropy of the ideal gas in the isothermal process amounts to

�Ssys = nR ln
Vf

Vi

= nR ln
pi

pf

,

hence, for n = 5 mol, pi = 2 atm, pf = 1 atm, we get �Ssys = (5 mol)R ln 2. Since
the process is reversible, we have

�Ssys + �Ssur = 0, (S4.2)

hence �Ssur = −�Ssys.
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4.6 The external pressure pext = 1 atm is constant, and the final pressure of the
ideal gas pf = pext, hence

W = −pext(Vf − Vi) = −nRT

(
1 − pf

pi

)
,

where n = 5 mol, T = 298 K and pi = 2 atm. The internal energy of the ideal gas
does not change (�U = 0), because the temperature does not change, thus, the heat
absorbed by the system Q = −W . The change in the entropy of the system is the
same as in the previous exercise, i.e.,

�Ssys = nR ln
Vf

Vi

= nR ln
pi

pf

= (5 mol)R ln 2,

because the initial and final states of the system are also the same. However, the
change in the entropy of the surroundings, which supply the heat Q to the system at
constant temperature T , is different. Since the surroundings are treated as a reservoir
of heat and volume, it can be assumed that they are in thermodynamic equilibrium
all the time, and the change in their entropy amounts to

�Ssur = −Q

T
= −nR

(
1 − pf

pi

)
= −

(
5

2
mol

)
R. (S4.3)

The total change in the entropy of the system and surroundings amounts to

�S = �Ssys + �Ssur = (5 mol)R

(
ln 2 − 1

2

)
> 0.

Thus, the process is irreversible, since �S > 0.

4.7 So far we have considered the Carnot engine working between two thermostats
of infinite heat capacity. Here, we assume that the heat capacity of the system at
higher temperature, i.e., the system we want to cool down, is finite. This means that
the temperature of the system decreases with each cycle of the engine. The engine
operates until the temperature of the system becomes equal to the temperature of
the radiator. Then the engine efficiency ηe reaches zero. We assume that the work
done in one cycle is small compared to the total work needed to lower the system
temperature to the value T2. This assumption allows us to treat the work done by
the engine in one cycle, W ∗, and the heat drawn from the system by the working
substance in the engine, Q1, as infinitesimal quantities. We denote by T the actual
temperature of the system, thus, the engine efficiency at T amounts to ηe(T ) =
1 − T2/T . According to the definition of ηe, we have

d̄W ∗ = ηe(T )d̄Q1 = −ηe(T )ncvdT .

Integrating this equality from the initial temperature of the system, T1, to the final
temperature T2, we obtain the total work required to cool down the system, i.e.

W ∗ = −ncv

∫ T2

T1

ηe(T )dT = ncv

∫ T1

T2

(
1 − T2

T

)
dT = ncv

(
T1 − T2 + T2 ln

T2

T1

)
.

The work W ∗ is positive, since we integrate a non-negative function ηe(T ).
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4.8 Both systems and the working substance in the Carnot engine form an adia-
batically isolated system which performs work on the surroundings. The system at
higher temperature is treated as a heat container, and the system at lower tempera-
ture is treated as a radiator. Since the engine works reversibly, the total entropy of
the composite system does not change. The change in the entropy of the heat con-
tainer and radiator during one cycle is denoted by dS1 and dS2, respectively. The
change in the entropy of the working substance in one cycle equals zero, hence, also
dS1 + dS2 = 0. Denoting by T ′ and T ′′ the actual temperatures of the heat con-
tainer and radiator, respectively, and using the relation between the heat capacity
and entropy, we get the following equation:

dS1 + dS2 = CV

dT ′

T ′ + CV

dT ′′

T ′′ = 0.

It is easy to verify that the solution of the above equation can be presented as fol-
lows:

ln
T ′

T1
+ ln

T ′′

T2
= 0,

because the value T ′ = T1 corresponds to T ′′ = T2. At the final temperature Tf ,
we have T ′ = T ′′ = Tf , hence, Tf = √

T1T2 is the geometric mean of the initial
temperatures of the heat container and radiator. In the case of direct thermal contact
of the heat container and radiator, we have

CV (T1 − Tf ) = CV (Tf − T2),

hence, the final temperature Tf = (T1 + T2)/2 is the arithmetic mean of the initial
temperatures. For T1 �= T2, the inequality

√
T1T2 < (T1 + T2)/2 holds, thus, the

final temperature obtained by means of the Carnot engine is lower than in the case
of direct thermal contact. It is so because a part of the internal energy is transferred
to the surroundings in the form of work.

4.9 The change in the molar entropy follows from the relation cv = T (∂s/∂T )v ,
hence

�s =
∫ Tf

Ti

(
A + BT − CT −2)dT

T
= A ln

Tf

Ti

+ B(Tf − Ti) + C

2

(
1

T 2
f

− 1

T 2
i

)
.

4.10 Since d̄Q = V cvdT , from the relation d̄Q = T dS, we get

�S = V

∫ Tf

Ti

cv

dT

T
= V 4γ

∫ Tf

Ti

T 2dT = 4

3
V γ

(
T 3

f − T 3
i

)
.

4.11 We supply the heat Q to the system, using either an electric heater or a heat
pump. We assume that the whole work of the electric current in the heater, Wh,
changes into heat, hence Q = Wh. In the case of a heat pump, the work of the
electric current, Wp , is related to the heat supplied to the system, Q, by

Q = ηpWp = T1

T1 − T2
Wp,



294 Solutions

where ηp denotes the efficiency of the heat pump, T1 = 23 ◦C is the temperature we
want to maintain at home, and T2 = 0 ◦C is the outdoor temperature. For the given
temperatures, we have ηp ≈ 12.9. This is a theoretical factor by which we can lower
the electricity bill, using a heat pump instead of an electric heater. In practice, the
profit is smaller and the installation of a heat pump is expensive.

4.12 The artesian well serves here as a radiator at the temperature T2 = 278.15 K,
whereas air above the Australian desert serves as a heat container at the temperature
T1 = 293.15 K. In these conditions, the efficiency of the Carnot engine ηe ≈ 0.05.
The heat Q1 drawn by the working substance in the engine is obtained from the
formula

Q1 = W ∗

ηe

, (S4.4)

where W ∗ is the work done by the engine. The heat Q2 which flows to the radiator
(the well) follows from the relation

Q1 + W + Q2 = Q1 − W ∗ − Q∗
2 = 0, (S4.5)

hence

Q∗
2 =

(
1

ηe

− 1

)
W ∗ = T2

T1 − T2
W ∗.

Substituting W ∗ = 500 kJ, we get Q∗
2 ≈ 9272 kJ.

4.13 We use the relations:

T =
(

∂U

∂S

)
V,n

= 3B
S2

nV
,

p = −
(

∂U

∂V

)
S,n

= B
S3

nV 2
.

Then, from the equation of state U = BS3/(nV ), we determine the entropy as a
function of U , V and n, i.e.,

S =
(

UV n

B

)1/3

.

Substituting S into the expressions for T and p, we get:

T = 3

(
BU2

nV

)1/3

,

p = U

V
.

4.14 From the extensiveness of entropy, we have S(U,V ) = V s(u), where s = S/V

and u = U/V . Using the relation

1

T
=

(
∂S

∂U

)
V

= ds

du
= ds

dT

dT

du
,
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and the equation of state u = γ T 4, we get

ds

dT
= 1

T

du

dT
= 4γ T 2,

hence

S = V s = 4

3
γV T 3.

Then, expressing T as a function of U and V , we get

S = 4

3
(γ V )1/4U3/4.

The pressure of the photon gas is determined from the relation

p

T
=

(
∂S

∂V

)
U

= 1

3
γ 1/4

(
U

V

)3/4

= 1

3
γ T 3,

hence, p = γ T 4/3. This is the second of the two equations of state for the photon
gas.

4.15 We use the relation

ds = 1

T
du + p

T
dv.

From the equation of state u = 3RT/2 − a/v, we obtain du = (3R/2)dT +
(a/v2)dv, which is then substituted into the expression for ds. Using the second
equation of state, we get eventually

ds = 3R

2T
dT + R

v − b
dv.

Integrating both sides of this equation, we obtain the molar entropy as a function of
T and v:

s(T , v) = s0 + 3

2
R ln

(
T

T0

)
+ R ln

(
v − b

v0 − b

)
, (S4.6)

where the constants T0, v0 and s0 = s(T0, v0) define the reference state. To express
the molar entropy as a function of u and v, we determine T = 2(u + a/v)/(3R),
hence

s(u, v) = s0 + 3

2
R ln

(
u + a/v

u0 + a/v0

)
+ R ln

(
v − b

v0 − b

)
,

where u0 = 3RT0/2 − a/v0. It is easy to verify that differentiating s(u, v) with
respect to u and v, and using the relations (∂s/∂u)v = 1/T and (∂s/∂v)u = p/T ,
we recover both equations of state.

4.16 First, we introduce the molar quantities: sA = SA/nA, uA = UA/nA and vA =
VA/nA, and analogously for the system B . Then we have

sA =
(

uAvA

D

)1/3

, sB =
(

uBvB

D

)1/3

,
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hence (
∂sA

∂uA

)
vA

= 1

3

(
vA

Du2
A

)1/3

= 1

TA

,

(
∂sA

∂vA

)
uA

= 1

3

(
uA

Dv2
A

)1/3

= pA

TA

,

and analogous expressions hold for the system B . From the equality of pressures
and temperatures, the following equations result:

vA

u2
A

= vB

u2
B

,
uA

v2
A

= uB

v2
B

,

hence (
uA

uB

)2

= vA

vB

,

(
vA

vB

)2

= uA

uB

.

They are satisfied only if uA = uB and vA = vB , hence, also sA = sB . Since we
have U = UA + UB = nAuA + nBuB = nuA for the total internal energy, thus, u =
U/n = uA = uB . In a similar way we show that v = V/n = vA = vB . The molar
entropy of the fused system, s = S/n, must also satisfy the equilibrium conditions:

(
∂s

∂u

)
v

= 1

TA

= 1

TB

= 1

3

(
v

Du2

)1/3

,

(
∂s

∂v

)
u

= pA

TA

= pB

TB

= 1

3

(
u

Dv2

)1/3

,

where we have used the equalities uA = uB = u and vA = vB = v. Therefore, we
conclude that the function s(u, v) has the same form as sA(uA, vA) and sB(uB, vB),
i.e.,

s =
(

uv

D

)1/3

.

Since s = sA = sB , we show eventually that

S = ns = (nA + nB)s = nAsA + nBsB = SA + SB.

4.17 Since no external lateral force acts on the vessel, the total momentum of the
system is conserved and equal to zero. In Fig. S4.3, the gas occupies initially the
left half of the vessel. When the internal wall is removed, the mass center of the gas
shifts to the right. To maintain the zero value of the total momentum, the vessel shifts
to the left, that is, in the opposite direction to the gas motion in the vessel. The gas
motion causes the vessel to oscillate on the surface without friction. The oscillatory
motion decays because according to the fundamental law of thermodynamics every
isolated system reaches eventually an equilibrium state. In equilibrium, there is no
macroscopic flow, therefore, the mass center of the gas must be at rest. Since the
total momentum is conserved, the mass center of the vessel must also be at rest.
Thus, the motion of the gas and vessel stops eventually.
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Fig. S4.3 Broken line shows
the mass center position of
the vessel filled with a gas

Exercises of Chapter 5

5.1 The derivative of the function Y = Ax2 + Bx + C:

dY

dx
= 2Ax + B,

is a monotonic function of the variable x, thus, the relation dY/dx = z can be in-
verted, i.e.,

x = z − B

2A
.

The Legendre transform of Y(x) is the function

Ψ (z) = Y(x) − zx.

Substituting x expressed by z, we get

Ψ (z) = − z2

4A
+ Bz

2A
− B2

2A
+ C,

hence, dΨ/dz = −(z − B)/(2A) = −x. In the case of the function Y = x + aex , we
have z = dY/dx = 1 + aex , hence

x = ln
z − 1

a

and

Ψ (z) = z − 1 − (z − 1) ln
z − 1

a
,

dΨ

dz
= − ln

z − 1

a
= −x.

5.2 Since the process occurs at constant pressure, we have Hi = Ui + pVi at the
beginning of the process and Hf = Uf + pVf at the end. Thus, the change in the
enthalpy of the system is equal to

�H = Hf − Hi = Uf − Ui + p(Vf − Vi) = �U + p�V.
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5.3 We have Fi = Ui − T Si at the beginning of the process and Ff = Uf − T Sf at
the end, thus, the change in the Helmholtz free energy is equal to

�F = Ff − Fi = Uf − Ui − T (Sf − Si) = �U − T �S.

5.4 We use the definitions of thermodynamic potentials and their derivatives with
respect to the natural variables. For instance, F = U − T S, (∂F/∂T )V,n = −S,
hence (

∂F/T

∂T

)
V,n

= 1

T

(
∂F

∂T

)
V,n

− F

T 2
= − 1

T 2
(F + T S) = − U

T 2
.

In the case of the Gibbs free energy, we have G = U − T S + pV = H − T S,
(∂G/∂T )p.n = −S, hence(

∂G/T

∂T

)
p,n

= − S

T
− G

T 2
= − H

T 2
.

The last relation is called the Gibbs–Helmholtz relation. In a similar way, we prove
the remaining relations.

5.5 We make use of the Gibbs–Helmholtz relation derived in the previous exercise.
Integrating both sides of the relation over T , from Ti to Tf , we get

Gf

Tf

− Gi

Ti

= −
∫ Tf

Ti

H

T 2
dT = −H

∫ Tf

Ti

1

T 2
dT = H

(
1

Tf

− 1

Ti

)
,

hence

Gf = Gi

Tf

Ti

+ H

(
1 − Tf

Ti

)
.

5.6 Differentiating U with respect to S and V , we get

T =
(

∂U

∂S

)
V,n

= 3B
S2

nV
,

p = −
(

∂U

∂V

)
S,n

= B
S3

nV 2
.

The Gibbs free energy is defined as G = U −T S +pV , and its natural variables are
T , p and n. Therefore, we have to express S and V in terms of T , p and n, i.e.,

S = T 2n

9Bp
,

V = T 3n

27Bp2
.

We notice that U = pV , hence

G = U − T S + pV = 2pV − T S = 2T 3n

27Bp
− T 3n

9Bp
= − T 3n

27Bp
.
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Alternatively, we obtain the chemical potential from the relation μ = (∂U/∂n)S,V ,
and then express μ as a function of T and p, and make use of the relation G = μn.

5.7 The internal energy of the photon gas per unit volume is equal to u = U/V =
γ T 4. From the definition of temperature, we have T ds = du = 4γ T 3dT , where s is
the entropy of the system per unit volume, hence

ds = 4γ T 2dT ,

which gives S = (4/3)V γ T 3. Then we determine the Helmholtz free energy

F(T ,V ) = U − T S = −1

3
γV T 4,

and the pressure as a function of T , i.e.,

p = −
(

∂F

∂V

)
T

= 1

3
γ T 4.

Now we can calculate the Gibbs free energy

G = U − T S + pV = γV T 4 − 4

3
γV T 4 + 1

3
γV T 4 = 0.

The Gibbs free energy is equal to zero because the number of photons is not a
thermodynamic parameter. Finally, we calculate the enthalpy

H = U + pV = 4

3
γV T 4 = T S.

The natural variables of the enthalpy are S and p, therefore, we have to express T

as a function of pressure, i.e.,

T =
(

3p

γ

)1/4

,

hence

H = S

(
3p

γ

)1/4

.

5.8 We use the relation

p = −
(

∂F

∂V

)
T ,n

= −
(

∂φ

∂v

)
T

,

where φ = F/n denotes the molar Helmholtz free energy. Since

p = RT

v − b
− a

v2
,

we obtain

φ(T , v) = φ0(T ) +
∫ v

v0

p
(
T ,v′)dv′ = φ0(T ) + RT ln

v − b

v0 − b
+ a

(
1

v
− 1

v0

)
,
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where v0 is the molar volume of the reference state, and φ0(T ) = φ(T , v0). The
Helmholtz free energy F(T ,V,n) = nφ(T , v). To determine the function φ0(T ),
we have to know the dependence of the molar internal energy on T and v.

5.9 We use the relation (see (5.132))(
∂U

∂V

)
T ,n

= −p + T

(
∂p

∂T

)
V,n

,

into which we substitute the van der Waals equation of state

p = nRT

V − nb
− an2

v2
,

which gives (
∂U

∂V

)
T ,n

= an2

V 2
.

Integrating the last relation over V and making use of extensiveness of the internal
energy, we get

U(T ,V,n) = nf (T ) +
∫

an2

V 2
dV = nf (T ) − an2

V
,

where f (T ) is a function of temperature to be determined. Since(
∂U

∂T

)
n,V

= ncv,

we obtain f (T ) = 3RT/2, hence, the internal energy is given by the formula

U(T ,V,n) = 3

2
nRT − an2

V
.

5.10 For a system heated at constant pressure, we have

�H =
∫ Tf

Ti

cpdT = a(Tf − Ti) + b

2

(
T 2

f − T 2
i

)

and

�S =
∫ Tf

Ti

cp

T
dT = a ln

Tf

Ti

+ b(Tf − Ti).

5.11 We have

Cp = T

(
∂S

∂T

)
p.n

,

hence (
∂Cp

∂p

)
T ,n

= T

(
∂2S

∂T ∂p

)
n

= −T

(
∂2V

∂T 2

)
p,n

,
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where we have used the Maxwell relation(
∂S

∂p

)
T ,n

= −
(

∂V

∂T

)
p,n

.

5.12 We write the differential of V (T ,p) at constant mole number:

dV =
(

∂V

∂T

)
p

dT +
(

∂V

∂p

)
T

dp = V αdT − V κT dp.

Since κT and α are assumed constant, we can easily integrate dV . Dividing both
sides by V and then integrating, we get

ln
V

V0
= α(T − T0) − κT (p − p0),

hence

V = V0e[α(T −T0)−κT (p−p0)],
where V0, T0 and p0 define the reference state.

5.13 We use the differential of the potential Ψ , i.e.,

dΨ = T dS − pdV − ndμ.

From the equality of mixed second order partial derivatives, we derive the following
Maxwell relations: (

∂T

∂V

)
S,μ

= −
(

∂p

∂S

)
V,μ

,

(
∂T

∂μ

)
S,V

= −
(

∂n

∂S

)
V,μ

,

(
∂p

∂μ

)
S,V

=
(

∂n

∂V

)
S,μ

.

In the case of the potential Θ , we have

dΘ = T dS + V dp − ndμ,

hence, the Maxwell relations follow:(
∂T

∂p

)
S,μ

=
(

∂V

∂S

)
p,μ

,

(
∂T

∂μ

)
S,p

= −
(

∂n

∂S

)
p,μ

,

(
∂V

∂μ

)
S,p

= −
(

∂n

∂p

)
S,μ

.

5.14 The potential Ψ (S,V,μ) is an extensive quantity, thus, ψ = Ψ/V =
Ψ (s,1,μ), where s = S/V . The natural variables are the entropy per unit volume
and chemical potential. At constant volume, we have

dΨ = T dS − ndμ.
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Dividing both sides by V , we get

dψ = T ds − ρdμ,

where ρ = n/V = 1/v.

5.15 It follows from the Euler relation U = T S − pV + μn that

Θ = U + pV − μn = T S,

hence, T = Θ/S. At constant entropy, we have

dΘ = V dp − ndμ,

hence, dividing both sides by S, we get

dT = V

S
dp − n

S
dμ.

We notice that it is simply a different form of the Gibbs–Duhem equation: dμ =
−sdT + vdp, with s = S/n and v = V/n.

5.16 We have (
∂v

∂μ

)
T

=
(

∂v

∂p

)
T

(
∂p

∂μ

)
T

= 1

v

(
∂v

∂p

)
T

= −κT ,

where we have used the Gibbs–Duhem equation. The second derivative is calculated
in a similar way, i.e.,(

∂s

∂μ

)
T

=
(

∂s

∂p

)
T

(
∂p

∂μ

)
T

= 1

v

(
∂s

∂p

)
T

.

It follows from the Gibbs–Duhem equation that(
∂s

∂p

)
T

= −
(

∂v

∂T

)
p

,

hence (
∂s

∂μ

)
T

= −α.

5.17 The inversion temperature in the Joule–Thomson process satisfies the condi-
tion T α = 1, therefore, we have to calculate the thermal expansion coefficient:

α = 1

v

(
∂v

∂T

)
p

,

for

pv = RT
[
1 + b(T )p

]
.

Since we differentiate at constant pressure, we get

T α = RT

pv

(
∂pv/R

∂T

)
p

= 1

1 + bp

(
∂T (1 + bp)

∂T

)
p

= 1 + T b′(T )p

1 + b(T )p
,

where b′(T ) = db/dT . Thus, the inversion temperature satisfies the equation

b′(T ) = 0.
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Exercises of Chapter 6

6.1 Since T and p are treated as independent variables, we have μ = μ(T , v) and
p = p(T , v). Chemical potentials and pressures of coexisting phases are equal, i.e.,

μα
(
T ,vα

) = μβ
(
T ,vβ

) = . . . ,

pα
(
T ,vα

) = pβ
(
T ,vβ

) = . . . ,

where α,β, . . . correspond to different phases. Thus, we have 2(P − 1) equations
and P + 1 variables, since the molar volume is different for different phases, in
general. Subtracting the number of equations from the number of variables, we get

f = P + 1 − 2(P − 1) = 3 − P.

Since f ≥ 0, the number of coexisting phases P cannot exceed three. For instance,
when two phases coexist, we can change their temperature, and the molar volumes
vα and vβ are functions of T .

6.2 It follows from the Gibbs-Duhem equation that pressure can be treated as a
function of T and μ. Therefore, for the phases α and β , we have pα(T ,μ) and
pβ(T ,μ), respectively. The pressures are equal on the coexistence line, hence

pα
(
T ,μcoex(T )

) = pβ
(
T ,μcoex(T )

)
.

Differentiating both sides of this equality with respect to T , we get(
∂pα

∂T

)
μcoex

+
(

∂pα

∂μcoex

)
T

dμcoex

dT
=

(
∂pβ

∂T

)
μcoex

+
(

∂pβ

∂μcoex

)
T

dμcoex

dT
.

From the Gibbs-Duhem equation: dμ = −sdT + vdp, the relations (∂p/∂T )μ = sρ

and (∂p/∂μ)T = ρ follow, where ρ = n/V = 1/v, hence

dμcoex

dT
= − sαρα − sβρβ

ρα − ρβ
= −�(sρ)

�ρ
.

6.3 Chemical potentials of two coexisting phases are equal. We know the chemical
potential of the monatomic ideal gas (see (5.52)):

μg(T ,p) = μ0
T

T0
− 5

2
RT ln

T

T0
+ RT ln

p

p0
,

thus, μcoex(T ) = μg(T ,pcoex(T )), where pcoex(T ) denotes the pressure on the
liquid–vapour coexistence line. Since the molar volume of the vapour is much big-
ger than the molar volume of the liquid, we have �v ≈ vg , where vg = RT/p for
the ideal gas. Then, the pressure pcoex(T ) satisfies the Clausius-Clapeyron equa-
tion (6.41), which can be integrated if the enthalpy of transition does not depend on
temperature, and we obtain see (6.42)):

pcoex(T ) = pcoex(T0) exp

[
�h

R

(
1

T0
− 1

T

)]
.
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Substituting pcoex(T ) into the expression for the chemical potential μg , we obtain

μcoex(T ) = μ0
T

T0
− 5

2
RT ln

T

T0
+ �h

(
T

T0
− 1

)
.

6.4 Before we start to supply heat to the system only the phase α is present, there-
fore, we determine the mole number of the phase β from the ratio

nβ = Q/�h.

Hence, the ratio of the mole numbers of the two phases amounts to

nβ

nα
= nβ

n − nβ
= Q

n�h − Q
,

which can also be written in the form of a lever rule:

nβ(n�h − Q) = nαQ.

It follows from this expression that if Q = n�h then nα = 0, which means that the
phase α has changed completely into the phase β .

6.5 The average molar volume is defined as

v = xαvα + xβvβ,

where xα = nα/n, xβ = nβ/n, nα + nβ = n, hence

v = xαvα + (
1 − xα

)
vβ = vβ − xα�v,

where �v = vβ − vα . The molar fraction of the phase α at the end of the process,
xα
f = nα

f /n, is given, whereas to calculate the average molar volume vi at the be-
ginning of the process, we have to find xα

i first. It follows from the context that
the amount of the phase α at the beginning of the process, nα

i , was grater than the
amount of α at the end, nα

f , thus

Q = (
nα

i − nα
f

)
�h,

hence

Q/n = q = (
xα
i − xα

f

)
�h.

Substituting xα
i from this equation into the expression for v, we get eventually

vi = vβ − (
xα
f + q/�h

)
�v = vf − q�v/�h,

where vf = vβ − xα
f �v.

6.6 We use the equation (see (6.39))

pcoex(T ) = pcoex(T0) + �h

�v
ln

T

T0
.

Substituting the numbers, we get

�h/�v = −3.54 × 109 N m−2 = −3.54 × 104 bar
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and T/T0 = 263.15/273.15, hence ln(T /T0) = −0.0373. Finally, we get

pcoex(T ) = pcoex(T0) + 1320 bar.

Thus, to lower the melting point of ice by 10 ◦C, we have to apply a pressure ap-
proximately 1300 times bigger than atmospheric pressure.

6.7 Since we want to determine �h, we only need to transform the expression used
in Exercise 6.6, i.e.,

�h = [pcoex(T ) − pcoex(T0)]�v

ln(T /T0)
.

We have �v = vl − vs = 3 cm3 mol−1, T0 = 350 K, T = 351 K, pcoex(T0) = 1 bar,
pcoex(T ) = 100 bar, ln(T /T0) = 2.85 × 10−3, hence, �h = 1.04 kJ mol−1.

6.8 Since a liquid–gas transition is concerned, we use the equation (see (6.42))

pcoex(T ) = pcoex(T0) exp

[
�h

RT0

(
1 − T0

T

)]
,

which we transform to the following form:

1

T0
− 1

T
= R

�h
ln

[
pcoex(T )

pcoex(T0)

]
= 8.314 J K−1 mol−1

14.4 kJ mol−1
ln 2 = 4 × 10−4 K−1,

hence T = 194 K.

6.9 We have two coexistence lines: the liquid–vapour line and solid–vapour line.
The coordinates of the triple point, (T3,p3), are obtained from the intersection of
these lines, i.e.,

15.16 − 3063 K/T3 = 18.70 − 3754 K/T3,

hence, T3 = 195.2 K, p3 = 0.588 atm. To find the enthalpy of evaporation and subli-
mation, we notice that the coefficient at −1/T in the function ln[pcoex(T )/pcoex(T0)]
is equal to �h/R (see Exercise 6.8), hence

�hvap = 3063 K × 8.314 J K−1 mol−1 = 25.466 kJ mol−1,

�hsub = 3754 K × 8.314 J K−1 mol−1 = 31.211 kJ mol−1.

Since enthalpy is a state function, we can obtain the solid–liquid transition as a
combination of the solid–vapour and vapour–liquid transitions, hence

�hmel = �hsub − �hvap = 5.745 kJ mol−1.

6.10 First, we calculate the pressure on the sublimation line corresponding to the
temperature of −5 ◦C (T ≈ 268 K), using the expression (see Exercise 6.8)

ln

[
pcoex(T )

pcoex(T3)

]
= �hsub

R

(
1

T3
− 1

T

)
,

where for the triple point temperature we assume 273 K. Substituting pcoex(273) =
p3 = 0.006 bar, we get

pcoex(268) = pcoex(273) exp(−0.419) = 0.004 bar.
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The pressure of water vapour equal to 2 Tr = 0.0027 bar is well below the pressure
of sublimation at the temperature of −5 ◦C. Frost can remain only if the vapour
pressure is close to the pressure of sublimation at a given temperature. Thus, the
frost will disappear from the car glass.

6.11 First, we derive the barometric formula, i.e., the relation between the gas pres-
sure and the altitude. The gravity of a gas column, of the height dz and the mass
density ρm, is balanced by the pressure difference dp = −ρm(p)gdz, where g is
the earth gravity. Using the relation ρm = Mρ, where ρ is the molar density and M

denotes the molar mass, and assuming the ideal gas equation of state, p = RTρ, we
get

dp = −Mgρdz = −Mg
p

RT
dz.

Integrating this equation, we obtain the barometric formula:

p(z) = p0 exp

[
−Mg(z − z0)

RT

]
.

Deriving this formula, we make an assumption that the temperature T does not
change with the altitude. Although it is not true, in general, such an approximation
is sufficient for the present purpose.

Boiling consists in formation of vapour bubbles in the whole volume of a liquid.
It occurs when the vapour pressure at the liquid–vapour coexistence equals atmo-
spheric pressure. The boiling temperatures T0 and TH result from the equations
pcoex(T0) = p0 and pcoex(TH ) = pH , where p0 and pH denote the pressures at
the foot of the mountain and at the altitude H , respectively. Thus, we have

ln
pcoex(TH )

pcoex(T0)
= ln

pH

p0
= −Mg�H

RT
,

where �H is the height of the mountain. Using expression (6.42), we obtain the
equation

�h

R

(
1

T0
− 1

TH

)
= −Mg

RT
�H ,

from which we determine �H :

�H = �h

Mg

(
T

TH
− T

T0

)
.

Substituting T = 293 K (20 ◦C) and M = 28 g mol−1 (for N2 molecule), we get

�H = 45 kJ mol−1

28 g mol−1 × 9.81 m s−2

(
293

368
− 293

378

)
= 3.45 km.

In principle, we should take into account that air is a mixture of gases, mainly ni-
trogen (78 %) and oxygen (21 %), and apply the barometric formula to each gas
separately and then add the partial pressures of the gases. Since nitrogen predomi-
nates, and the molecular mass of O2 (32) does not differ much from the molecular
mass of N2 (28), we do not make a big error, approximating air by nitrogen alone.
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6.12 We calculate the derivative with respect to temperature of the function

�s(T ) = sβ
(
T ,pcoex(T )

) − sγ
(
T ,pcoex(T )

)
,

where pcoex(T ) is the pressure of coexisting phases at the temperature T . We have

dsβ

dT
=

(
∂sβ

∂T

)
pcoex

+
(

∂sβ

∂pcoex

)
T

dpcoex

dT
= c

β
p

T
− vβαβ dpcoex

dT
,

where c
β
p and αβ denote the molar heat capacity at constant pressure and thermal

expansion coefficient of the phase β , respectively. Deriving the above relation, we
have used the Maxwell relation (∂s/∂p)T = −(∂v/∂T )p . An analogous expression
holds for the phase γ . Since dpcoex/dT = �s/�v, we get

d�s

dT
= �cp

T
− �(vα)

�s

�v
,

where �cp = c
β
p − c

γ
p , �v = vβ − vγ , �(vα) = vβαβ − vγ αγ .

6.13 The enthalpy H = U + pV = T S + μn, hence, the molar enthalpy h = T s +
μ. At the coexistence of phases β and γ , we have �h = T �s, since μβ = μγ .
Substituting �s = �h/T in Exercise 6.12 and neglecting thermal expansion, we
get

d(�h/T )

dT
= �cp

T
.

Then, we integrate the above equality from T0 to T , hence

�h(T )

T
− �h(T0)

T0
=

∫ T

T0

�cp(T ′)
T ′ dT ′ = �a(T − T0) + (�b − T0�a) ln

T

T0
,

where �a = aβ − aγ and �b = bβ − bγ . Using this formula, we can calculate
the enthalpy of transition at the temperature T if we know �h at the reference
temperature T0.

6.14 The infinitesimal heat absorbed by the system in a reversible process equals
d̄Q = T dS. Since the process occurs at constant V and n, and the parameter that we
control is temperature, the appropriate thermodynamic potential is the Helmholtz
free energy F(T ,V,n). From the Euler relation, we get F = U − T S = −pV +
μn. The system considered is a two-phase system, the pressure p = pcoex and the
chemical potential μ = μcoex are functions of temperature, thus (see (6.14))

F = U − T S = −pcoex(T )V + μcoex(T )n.

To calculate the heat Q absorbed by the system heated from the temperature T0 to
T1, we notice that the change in the internal energy �U = Q, since the volume is
constant, thus, the work W = 0. Using the relation (see Exercise 5.4)(

∂F/T

∂T

)
V,n

= − U

T 2
,
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we get

Q = �U = −�

[
T 2

(
∂F/T

∂T

)
V,n

]
= −n�

[
T 2

(
∂φcoex/T

∂T

)
v

]
,

where φcoex(T , v) = −pcoex(T )v + μcoex(T ) denotes the molar Helmholtz free en-
ergy of the system at the temperature T and at the average molar volume v = V/n.
We can proceed with the calculation if we know the explicit form of the functions
pcoex(T ) and μcoex(T ). For instance, for the liquid–vapour coexistence, and with
the additional assumptions specified in this exercise, we have

pcoex(T ) = pcoex(T0) exp

[
�h

R

(
1

T0
− 1

T

)]
,

μcoex(T ) = μ0
T

T0
− 5

2
RT ln

T

T0
+ �h

(
T

T0
− 1

)
.

6.15 We have (see (6.58))

Tcr = 8a

27Rb
= 8 × 0.15

27 × 8.314 × 4 × 10−5
K = 133.6 K,

pcr = a

27b2
= 0.15

27 × 16 × 10−10
Pa = 34.7 bar,

vcr = 3b = 3 × 4 × 10−5 m3 mol−1 = 0.12 L mol−1.

6.16 We use the relations:

vcr = 3b, pcr = a

27b2
, Tcr = 8a

27Rb
.

Since

u = f

2
RT − a

v
,

at the critical point, we have

ucr = f

2
RTcr − a

vcr
= a

27b
(4f − 9).

Dividing u by ucr, we get

ū = 4f

4f − 9
T̄ − 9

4f − 9

1

v̄
.

For f = 3, 5 and 6, we obtain, respectively:

ū = 4T̄ − 3

v̄
,

ū = 20

11
T̄ − 9

11v̄
,

ū = 8

5
T̄ − 3

5v̄
.
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6.17 We use expression (6.51):

φ(T , v) =
(

1

2
f R − s0

)
T − a

v
− 1

2
f RT ln

T

T0
− RT ln

v − b

v0 − b
,

where φ = F/n is the molar Helmholtz free energy. From the Euler relation, we get
F = U − T S = −pV + μn, hence, μ = φ + pv. Assuming that T > Tcr, we can
determine v = v(T ,p) from the van der Waals equation of state:

p = RT

v − b
− a

v2
,

hence

μ(T ,p) = pv(T ,p) +
(

1

2
f R − s0

)
T − a

v(T ,p)
− 1

2
f RT ln

T

T0

− RT ln
v(T ,p) − b

v0 − b
.

As the limit p → 0 corresponds to v → ∞, we have

p = RT

v

(
1

1 − b/v
− a

RT v

)
≈ RT

v
,

i.e., the ideal gas equation of state, hence

μ(T ,p) − RT ln
p

p0
→

[
1

2
(f + 2)R − s0

]
T − 1

2
f RT ln

T

T0
− RT ln

RT

(v0 − b)p0
.

Taking (v0 − b)p0 = RT0, we get eventually

μ0(T ) =
[

1

2
(f + 2)R − s0

]
T − 1

2
(f + 2)RT ln

T

T0
.

Comparing μ0(T ) with the chemical potential of the ideal gas, μid (see (4.70)), we
note that μ0(T ) = μid(T ,p0). The chemical potential of the van der Waals gas can
be presented as follows:

μ(T ,p) = μ0(T ) + pv − RT − a

v
+ RT ln

RT

p0(v − b)
,

where v = v(T ,p) is obtained from the van der Waals equation of state. Using the
relation

pv − RT = RT b

v − b
− a

v
,

we can eliminate p and express the chemical potential as a function of T and v:

μ(T , v) = μ0(T ) + RT b

v − b
− 2a

v
+ RT ln

RT

p0(v − b)
.
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Exercises of Chapter 7

7.1 The volume of the solution amounts to

V = nAvA + nBvB = n(xAvA + xBvB).

As vA, vB and xB are given, it remains to determine n = nA + nB . The mass of the
solution is given by the relation

m = nAMA + nBMB = n(xAMA + xBMB)

= n(0.55 × 58 + 0.45 × 118) g mol−1 = n × 85 g mol−1,

and for m = 0.85 kg, we get n = 10 mol. For the volume V , we obtain

V = 10(0.55 × 74 + 0.45 × 80) cm3 = 767 cm3.

7.2 According to the general definition of a partial molar quantity, we have

hi =
(

∂H

∂ni

)
T ,p,nj �=i

.

The differential of enthalpy

dH = T dS + V dp +
C∑

i=1

μidni,

hence (
∂hi

∂p

)
T ,x

=
(

∂2H

∂ni∂p

)
T ,nj �=i

.

We use the relation (
∂H

∂p

)
T ,nj

= V + T

(
∂S

∂p

)
T ,nj

,

and from the differential of the Gibbs free energy

dG = −SdT + V dp +
C∑

i=1

μidni,

we obtain the Maxwell relation(
∂S

∂p

)
T ,nj

= −
(

∂V

∂T

)
p,nj

,

thus, (
∂H

∂p

)
T ,nj

= V − T

(
∂V

∂T

)
p,nj

= −T 2
(

∂V/T

∂T

)
p,nj

.
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Differentiating both sides of the above equality with respect to ni at constant T , p

and nj �=i , we get the relation
(

∂hi

∂p

)
T ,x

= −T 2
(

∂2V/T

∂T ∂ni

)
p,nj �=i

= −T 2
(

∂vi/T

∂T

)
p,x

.

7.3 The Gibbs–Duhem equation at constant T and p has the following form:

C∑
i=1

xidμi = 0.

From the form of the chemical potential: μi = μ∗
i (T ,p) + RT lnxi , it follows that

at constant T and p, we have dμi = RT dxi/xi , hence

C∑
i=1

xidμi = RT

C∑
i=1

dxi = RT d
C∑

i=1

xi = 0,

as the molar fractions sum up to unity. This shows that the Gibbs–Duhem equation
is satisfied.

7.4 From the form of the chemical potentials, it follows that at T = const and
p = const, we have

xAdμA + xBdμB = RT dxA + xAW ′(xB)dxB + RT dxB + xBW ′(xA)dxA,

where W ′(x) denotes the derivative. Taking into account the relations xA + xB = 1
and dxB = −dxA, we get

xAdμA + xBdμB = [
(1 − xA)W ′(xA) − xAW ′(1 − xA)

]
dxA.

Since W(x) = ∑N
n=1 Wnx

n, the right-hand side of the above equation vanishes if

N∑
n=1

nWn

[
(1 − xA)xn−1

A − xA(1 − xA)n−1] = 0.

It is easy to show that the expression in the brackets vanishes only if n = 2, thus, the
polynomial must be of the form W(x) = W2x

2, where W2 depends on T and p, in
general.

7.5 According to the definition of the Gibbs free energy of mixing, we have

�MG

n
= xA

(
μA − μ∗

A

) + xB

(
μB − μ∗

B

)
= RT (xA lnxA + xB lnxB) + xAW(xB) + xBW(xA).

As W(x) = W2x
2, and xAx2

B + xBx2
A = xAxB(xA + xB) = xAxB , we get

�MG

n
= RT (xA lnxA + xB lnxB) + W2 xAxB.
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7.6 At constant T and p, the Gibbs–Duhem equation xAdvA + xBdvB = 0 must
hold. Treating xA as an independent variable, we get

xA

∂vA

∂xA

+ xB

∂vB

∂xA

= 0.

The first term vanishes at xA = 0, and since xB = 1 − xA = 1, we get ∂vB/∂xA =
0 at xA = 0. Analogously, treating xB as an independent variable, we show that
∂vA/∂xB = 0 at xB = 0. Thus, the Taylor expansion of the function vA(xB) around
xB = 0, and the function vB(xA) around xA = 0, has the following form:

vA(xB) = v∗
A + aAx2

B + · · · ,
vB(xA) = v∗

B + aBx2
A + · · · ,

where we have neglected higher order terms.

7.7 We calculate xAdvA + xBdvB , substituting the expressions for vA and vB :

xAdvA + xBdvB = xA

[
2axB − 2(a − b)x2

B

]
dxB + xB

[
2bxA + 2(a − b)x2

A

]
dxA

= 2xAxB

[−a + (a − b)(1 − xA) + b + (a − b)xA

]
dxA = 0.

The molar volume of mixing is given by the formula

�Mv = �MV

n
= xA

(
vA − v∗

A

) + xB

(
vB − v∗

B

)
,

where �MV is the volume of mixing. Substituting vA and vB , we get

�Mv = xAxB

[
axB + bxA + 2

3
(a − b)

(
x2
A − x2

B

)]
.

Then, we make use of the relation xA + xB = 1, which gives

�Mv = xAxB

3

[
(2a + b)xA + (a + 2b)xB

]
.

7.8 Substituting the molar fractions into the formula for the entropy of mixing of
an ideal mixture:

�MS = −nR
∑

i

xi lnxi,

we get

�MS

n
= −8.314(0.781 ln 0.781 + 0.21 ln 0.21 + 0.009 ln 0.009) J K−1 mol−1

= 4.682 J K−1 mol−1.

7.9 The total pressure of air results from the ideal gas equation of state

p = RT

v
= 8.314 × 273.15

0.0224
Pa = 101383 Pa.

The partial pressure of nitrogen, oxygen and argon amounts to, respectively
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pN2 = 0.781p = 79180.12 Pa,

pO2 = 0.210p = 21290.43 Pa,

pAr = 0.009p = 912.45 Pa.

7.10 For the entropy of mixing, we have

�MS = −nR
∑

i

xi lnxi.

The Gibbs free energy of mixing:

�GM = �MH − T �MS,

depends only on temperature and on the mixture composition, because both terms
on the right-hand side do not depend on pressure. Therefore, the volume of mixing
vanishes:

�MV =
(

∂�MG

∂p

)
T ,nj

= 0,

and the internal energy of mixing equals the enthalpy of mixing:

�MU = �MH − p�MV = �MH.

7.11 We use the relations (
∂�MG

∂p

)
T ,nj

= �MV,

(
∂�MG

∂T

)
p,nj

= −�MS.

Using the equality of mixed second order partial derivatives of the function �MG,
we obtain the Maxwell relation(

∂�MS

∂p

)
T ,nj

= −
(

∂�MV

∂T

)
p,nj

.

If the volume of mixing does not change with temperature then the entropy of mix-
ing does not depend on pressure.

7.12 We use the relation (see (7.102))

ln
f (T ,p)

p
= 1

RT

∫ p

0

[
v
(
T ,p′) − vid(T ,p′)]dp′,

where vid(T ,p′) = RT/p′ denotes the molar volume of the ideal gas. Substituting

v(T ,p′)
RT

= 1

p′ + B(T ) + C(T )p′,

we get

ln
f (T ,p)

p
= B(T )p + 1

2
C(T )p2,
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hence

f (T ,p) = p exp

[
B(T )p + 1

2
C(T )p2

]
.

7.13 From the van der Waals equation of state,

p = RT

v − b
− a

v2
,

it follows that for temperatures higher than the critical temperature, v is a function
of temperature and pressure which can be expressed in the following form:

v(T ,p) = RT

p
+ vE(T ,p).

The first term on the right-hand side is the molar volume of the ideal gas, vid, and the
function vE(T ,p) characterizes deviations from the ideal behaviour. Substituting
v(T ,p) into the van der Waals equation of state and dividing both sides by p2, we
obtain the equation for vE(T ,p):

vE − b

RT + p(vE − b)
+ a

(RT + pvE)2
= 0,

hence

RT
[(

vE − b
)
RT + a

] + (
vE − b

)(
2RT vE + a

)
p + (

vE − b
)
vE2

p2 = 0.

We assume that vE can be expanded in a Taylor series in p, around p = 0, i.e.

vE(T ,p)

RT
= B(T ) + C(T )p + · · · .

Substituting this expansion into the above equation, we can calculate the coefficients
at consecutive powers of p:

B(T ) = b

RT
− a

(RT )2
,

C(T ) = a

(RT )3

(
2b − a

RT

)
.

For a = 0.15 J m3 mol−2, b = 4 × 10−5 m3 mol−1 and T = 273.13 K, we get

B = −1.147 × 10−3 bar−1, C = 1.786 × 10−6 bar−2,

hence

Bp + 1

2
Cp2 = −5.71 × 10−3,

which gives

Φ = exp

(
Bp + 1

2
Cp2

)
= 0.994.
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Note that for the given values of the constants a and b, we have (see Exercise 6.15)
Tcr = 133.6 K and pcr = 34.7 bar. Thus, for T = 273.15 K and p = 5 bar, the gas
behaves almost as the ideal gas.

7.14 From the solution of Exercise 6.17, we know that the chemical potential of the
van der Waals gas has the following form:

μ(T , v) = μ0(T ) + RT b

v − b
− 2a

v
+ RT ln

RT

p0(v − b)
.

The gas fugacity is defined as

μ(T ,p) = μ0(T ) + RT ln
f (T ,p)

p0
.

As above the critical temperature the relation between p and v is unique, we can
treat f as a function of T and v. From the comparison of the two expressions, it
follows that

ln
f

p0
= ln

RT

p0(v − b)
+ b

v − b
− 2a

RT v
,

hence

f (T , v) = RT

v − b
exp

(
b

v − b
− 2a

RT v

)
.

In the limit v → ∞, we obtain f (T , v) ≈ p. The fugacity coefficient Φ = f/p,
hence, for Tcr and pcr, we have v = vcr and

Φcr = f (Tcr, vcr)

pcr
= RTcr

pcr(vcr − b)
exp

(
b

vcr − b
− 2a

RTcrvcr

)
.

Substituting the values of the critical parameters of the van der Waals gas (see
(6.58)):

vcr = 3b, pcr = a

27b2
, Tcr = 8a

27Rb
,

we get

Φcr = 4 exp(−7/4) ≈ 0.695.

Thus, the deviation of the van der Waals gas at the critical point from the ideal gas
behaviour (Φ = 1) amounts to about 30 %.

7.15 We have P = 3 and C = 4, hence, f = C − P + 2 = 3.

7.16 We have P = 5, and the minimum number of components corresponds to
f = 0, thus, it amounts to Cmin = P − 2 = 3.

Exercises of Chapter 8

8.1 We find the liquid composition xA from the formula p = p∗
B + (p∗

A − p∗
B)xA,

which for p = (p∗
A + p∗

B)/2 gives xA = 0.5. The relation between the liquid com-
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position xA and the vapour composition yA follows from Raoult’s law, pA = p∗
AxA,

and Dalton’s law, pA = pyA, hence

yA = xA

p∗
A

p
= p∗

A

p∗
A + p∗

B

.

8.2 When the external pressure p is fixed, the temperature of the liquid–vapour
coexistence at that pressure is called the boiling point. We want to derive relations
between the boiling point of the solution A + B and its composition xA and the
composition of the vapour above the solution, yA. According to Raoult’s law the
vapour pressure above the solution with the composition xA amounts to

p = p∗
B(T ) + [

p∗
A(T ) − p∗

B(T )
]
xA,

where p∗
A(T ) and p∗

B(T ) denote the pressures of the liquid–vapour coexistence for
pure components at the temperature T . Hence, we determine the composition of the
solution which boils at the given temperature T at constant pressure p:

xA(T ) = p − p∗
B(T )

p∗
A(T ) − p∗

B(T )
.

To find the function xA(T ), we have to know the functions p∗
A(T ) and p∗

B(T ). It
follows from the Clausius–Clapeyron equation that in the case of a pure substance,
if the enthalpy of evaporation �h does not depend on temperature, then the pressure
on the liquid–vapour coexistence line, pcoex, is given by the formula

pcoex(T ) = pcoex(T0) exp
[
(�h/R)(1/T0 − 1/T )

]
,

where T0 is the temperature of a reference state. First, we use this formula to the
pure component A, substituting p∗

A for pcoex and the enthalpy of evaporation �h∗
A

for �h. As the reference temperature, we assume the boiling point of the pure A at
the pressure p, which we denote by T ∗

A . It follows from the definition of the boiling
point that p = p∗

A(T ∗
A), hence

p∗
A(T ) = p e(�h∗

A/R)(1/T ∗
A−1/T ).

Using analogous reasoning for the component B , we get

p∗
B(T ) = p e(�h∗

B/R)(1/T ∗
B−1/T ),

where T ∗
B denotes the boiling point of the pure B at the pressure p. Substituting

p∗
A(T ) and p∗

B(T ) into the formula for xA(T ), we get

xA(T ) = 1 − e(�h∗
B/R)(1/T ∗

B−1/T )

e(�h∗
A/R)(1/T ∗

A−1/T ) − e(�h∗
B/R)(1/T ∗

B−1/T )
.

This is the relation between the boiling point of the solution at constant pressure p

and the liquid composition.
To find the composition of the vapour above the solution, yA, we use the rela-

tion yA = pA/p (see Dalton’s law), where pA is the partial vapour pressure of the
component A, and then Raoult’s law pA = p∗

AxA, hence

yA(T ) = e(�h∗
A/R)(1/T ∗

A−1/T )xA(T ).
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To obtain the inverse relations, i.e., the temperature as a function of the liquid
or vapour composition, we need to expand the exponential function: ey ≈ 1 + y,
assuming that y is sufficiently small. Using the approximation 1/T ∗

A − 1/T ≈
(T − T ∗

A)/(T ∗
A)2, we get, e.g., for �h∗

A = 20 kJ and T ∗
A = 300 K:

�h∗
A

R(T ∗
A)2

= 0.027 K−1.

Thus, if the difference T − T ∗
A amounts to a few kelvins than the argument of the

exponential function is really small. It happens when the temperatures T ∗
A and T ∗

B

are not very different. We leave this simple exercise to the reader, to invert the rela-
tions xA = xA(T ) and yA = yA(T ) in the case when the approximation ey ≈ 1 + y

can be used.

8.3 We use the relations derived in Exercise 8.2. For pure substances, at the tem-
perature T = 350 K, we get: p∗

A(T )/p = 1.224, p∗
B(T )/p = 0.788. For the solution

A + B , the liquid composition results from Raoult’s law, and the vapour compo-
sition, from Dalton’s law, hence: xA = 0.486 and yA = 0.595. Thus, the vapour
composition is richer in the more volatile component A, which in the pure state
boils at a lower temperature.

8.4 First, we convert the concentration of O2 in water from milligrams per litre
to the molar fraction. We assume water to be the component A, and oxygen to be
the component B . Since the solution is dilute, the molar fraction of oxygen in the
solution, at the liquid–gas equilibrium, satisfies the inequality xB � 1, hence, we
get

xB ≈ nB/nA = v∗
AnB/VA,

where VA denotes the volume of water. The molar volume of water v∗
A =

0.018 L mol−1. The concentration of O2 is equal to 4 mg L−1, which corresponds
to nB/VA = 1.25 × 10−4 mol L−1, hence

xB = 0.018 × 1.25 × 10−4 = 2.25 × 10−6.

Multiplying xB by the Henry constant for oxygen in water, kB = 3.3 × 107 torr, we
get the partial pressure of oxygen above water surface:

pB = 3.3 × 107 × 2.25 × 10−6 torr = 74.25 torr.

This is the pressure needed to sustain the assumed concentration of oxygen in water
at the temperature of 25 ◦C.

8.5 We use expression (8.43) for the Ostwald absorption coefficient:

VB

VA

= RT

kBv∗
A

.

Substituting the values kB = 3.3×107 torr and v∗
A = 0.018 L mol−1, for T = 298 K,

we get

VB/VA = 8.314 × 298.15 J mol−1

3.3 × 107 × 133.322 Pa × 1.8 × 10−5 m3 mol−1
= 0.031.
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8.6 The elevation h of the column of water in the capillary corresponds to the
osmotic pressure

Π = ρgh,

where g is the gravity of earth, and ρ denotes the density of water. For a dilute
solution, we can use formula (8.57):

Π = RT nB

V
,

where B denotes the solute. The mole number of B , i.e., polyethylglicol, equals
nB = m/M . From the equality

Π = RT m

V M
= ρgh,

we determine the elevation of water level:

h = RT m

V Mρg
.

We notice that this formula can also be used to determine the molar mass of the
solute

M = RT m

Vρgh
.

8.7 The boiling point elevation amounts to �Tb = 1.8 K, hence, using formula
(8.35):

�Tb = KbmB,

we determine the molality of the solute

mB = �Tb

Kb

= 1.8

2.53
mol kg−1 = 0.711 mol kg−1.

Using the definition of the molality:

mB = nB

nAMA

,

where MA = 78 g mol−1 is the molar mass of benzene, we get nB/nA = 0.055. As
the mass of the solution amounts to

m = MAnA + MBnB = nA

(
MA + MB

nB

nA

)
= nA × 81.52 g mol−1,

for m = 100 g, we get nA = 1.227 mol and nB = 0.067 mol. Thus, the mass of the
non-volatile component amounts to

MBnB = 64 × 0.067 = 4.29 g.

8.8 First, we calculate the mole number of ethanol (component B), of the molar
mass MB = 46 g mol−1:

nB = 24 g

46 g mol−1
= 0.522 mol.
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As the mass of the solvent (water) amounts to 1 kg, the molality of ethanol amounts
to

mB = 0.522 mol kg−1.

The freezing point depression amounts to �Tf = −0.97 K, hence, for the cryscopic
constant of water we get

Kf = −�Tf

mB

= 1.86 K kg mol−1.

8.9 The freezing point depression �Tf = −0.5 K, hence, the molality of acetone
(component B) amounts to

mB = −�Tf

Kf

= 0.5

3.70
mol kg−1 = 0.135 mol kg−1,

and the mole number of B in 1.5 kg of acetic acid amounts to

nB = 0.135 × 1.5 mol = 0.203 mol.

The molar mass of acetone MB = 58 g/mol, thus, the mass of nBMB = 11.77 g of
acetone should be dissolved in 1.5 kg of acetic acid.

8.10 The solvent (benzene) is denoted by A and the solute (naphthalene) is denoted
by B . It follows from the assumptions that we can use formula (8.51):

lnxB = �h∗
B

R

(
1

T ∗
B

− 1

T

)
,

where T ∗
B = 352.3 K is the melting point of pure naphthalene, and �h∗

B =
19.0 kJ mol−1 is its enthalpy of melting. This relation, called the solubility line,
defines the molar fraction of the solute in saturated solution, above which the solute
precipitates from the solution as a solid. For the temperature T = 298 K, we get

lnxB = 19000

8.314

(
1

352.3
− 1

298

)
= −1.18.

Thus, the solubility of naphthalene in benzene at 298 K amounts to xB = 0.307.

8.11 It follows from the assumptions that both lines of liquid–solid coexistence
have the following form (see (8.52) and (8.53)):

lnxA = �h∗
A

R

(
1

T ∗
A

− 1

T

)
,

lnxB = �h∗
B

R

(
1

T ∗
B

− 1

T

)
,

where xB = 1 − xA. If we set xA on one axis and T on the other axis we obtain
two lines which intersect at the eutectic point. The temperature T = Te lies below
the freezing points of both components in the pure state. Substituting the data: xA =
xe = 0.4, Te/T ∗

A = 0.9, Te/T ∗
B = 0.84, we get
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lnxA = ln 0.4 = �h∗
A

RTe

(0.9 − 1) = −0.1
�h∗

A

RTe

,

lnxB = ln 0.6 = �h∗
B

RTe

(0.84 − 1) = −0.16
�h∗

B

RTe

,

hence, the ratio of the enthalpy of melting amounts to

�h∗
A

�h∗
B

= 1.6 × ln 0.4

ln 0.6
= 2.87.

Exercises of Chapter 9

9.1 We use the generalized form of Raoult’s law (see (9.6) and (9.7)):

pA = p∗
AγAxA,

pB = p∗
BγBxB,

where γA and γB denote the activity coefficients (see Definition 7.15). We can de-
termine γA and γB from measurements of the vapour pressure above the solution
and above pure components. We have p∗

A = 0.031 bar, p∗
B = 0.029 bar, xA = 0.2,

yA = 0.44 and p = 0.041 bar. Since vapour is treated as an ideal gas, we can use
Dalton’s law. Thus, the partial pressures amount to pA = yAp = 0.018 bar and
pB = yBp = 0.023 bar, hence, we get

γA = pA

p∗
AxA

= 2.9,

γB = pB

p∗
BxB

= 0.99.

The activity coefficient of the component B is very close to unity, thus, Raoult’s
law is better satisfied for that component. Note that here B is a solvent because
xB 	 xA.

9.2 From Dalton’s law, pA = pyA, pB = pyB , where p is the vapour pressure above
the solution, and pA and pB denote the partial pressures, hence

pyA = p∗
AγAxA, pyB = p∗

BγBxB.

At the azeotropic point, the vapour composition is the same as the liquid composi-
tion, i.e., yA = xA = xa and yB = xB = 1 − xa , therefore

p = p∗
AγA = p∗

BγB,

hence

γB

γA

= p∗
A

p∗
B

.

Using expressions (9.13) and (9.14) for activity coefficients in the simple solution:
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γA = exp
(
gABx2

B/RT
)
,

γB = exp
(
gABx2

A/RT
)
,

we get

ln
p∗

A

p∗
B

= ln
γB

γA

= gAB(2xa − 1)

RT
,

hence

gAB

RT
= ln 2.5

0.4
≈ 2.29.

For T = 298 K, we obtain gAB ≈ 5675 J mol−1. As gAB > 0, the activity coeffi-
cients are grater than one, which means positive deviation from Raoult’s law.

9.3 If the mixture is an azeotrope, then the composition at the azeotropic point,
xA = xa , follows from the formula (see Exercise 9.2):

2xa − 1 = RT

gAB

ln
p∗

A

p∗
B

= ln 3

0.9
= 1.22.

This gives xa = 1.11, which is in contradiction with the condition xa ≤ 1. Thus, the
mixture considered does not form an azeotrope.

9.4 The condition for the critical temperature (see 9.2.2) has the following form:

gAB(T )/RT = 5(T − T0)K−1 − 2(T − T0)
2 K−2 = 2.

This equation has two roots: T1 = T0 +0.5 K and T2 = T0 +2 K, hence, gAB/RT <

2, if either T < T1 or T > T2, and gAB/RT > 2, if T1 < T < T2. Thus, for tem-
peratures lower than T1 or higher than T2, the condition of intrinsic stability is
satisfied, i.e., the components are completely miscible, whereas for temperatures
T1 < T < T2, a miscibility gap exists. Thus, the miscibility curve is closed, T1 is the
lower critical temperature and T2 is the upper critical temperature.

9.5 According to the definition of the Henry constant we have (see Exercise 9.2)

kB = lim
xB→0

pB

xB

,

where pB is the partial pressure of B in the vapour above the solution, and xB is
the molar fraction of B in the solution. Since pB = p∗

BγBxB , where γB denotes the
activity coefficient of B in the solution, in the case of the simple solution, we get

kB = p∗
BγB(T , xA = 1) = p∗

B exp

[
gAB(T )

RT

]
.

At the composition of the azeotropic point, we have (see Exercise 9.2)

gAB(T )

RT
= 1

2xa − 1
ln

p∗
A

p∗
B

,
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hence

kB = p∗
B

(
p∗

A

p∗
B

)1/(2xa−1)

.

9.6 Since the solution is ideal, Raoult’s law holds. We also assume that vapour is
an ideal gas. From Raoult’s and Dalton’s laws, the relation between the solution
composition, xA, and the vapour pressure above the solution follows:

p = pA + pB = p∗
B + (

p∗
A − p∗

B

)
xA,

hence

xA(p) = p − p∗
B

p∗
A − p∗

B

.

The vapour composition results from the relation pA = pyA:

yA(p) = p∗
AxA(p)

p
.

Here, we treat pressure as an independent parameter and express the bubble point
and dew point isotherms accordingly, i.e.,(

∂xA

∂p

)
T

= yA�vA + yB�vB

(yA − xA)gxx

,

(
∂yA

∂p

)
T

= xA�vA + xB�vB

(yA − xA)gyy

.

The molar Gibbs free energy of an ideal mixture is given by (see (9.43))

g = gid = μ∗
AxA + μ∗

BxB + RT (xA lnxA + xB lnxB),

hence

gxx =
(

∂2g

∂x2
A

)
T ,p

= RT

xAxB

,

gyy =
(

∂2g

∂y2
A

)
T ,p

= RT

yAyB

.

Substituting these expressions into the equations of the bubble point and dew point
isotherms, we get (

∂ lnxA

∂p

)
T

= xB(yA�vA + yB�vB)

RT (yA − xA)
,

(
∂ lnyA

∂p

)
T

= yB(xA�vA + xB�vB)

RT (yA − xA)
.

As lnyA = lnxA − ln(p/p∗
A), we have(
∂ lnxA

∂p

)
T

−
(

∂ lnyA

∂p

)
T

= 1

p
,
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and after simple transformations we get

�vA

RT
= 1

p
,

�vB

RT
= 1

p
;

to obtain the second relation we have replaced A with B in the equations of the
isotherms. Note that the above relations are in accord with the assumption that
vapour is an ideal gas and that the molar volumes of the liquids A and B can be
neglected in �vA and �vB .

Exercises of Chapter 10

10.1 To prove the stability condition, we use the form of the chemical potential for
the ideal gas:

μi(T ,p, xi) = μ0
i (T ) + RT ln

(
p/p0) + RT lnxi.

From the definition of the affinity of reaction, we get(
∂2G

∂ξ2

)
T ,p

= −
(

∂A

∂ξ

)
T ,p

=
∑

i

νi

(
∂μi

∂ξ

)
T ,p

.

The molar fractions as functions of ξ are defined by

xi(ξ) = ni(ξ)

n(ξ)
= ni(0) + νiξ

n(ξ)
,

where n(ξ) = ∑
i ni(ξ) = n(0) + ξ�n, and �n = ∑

i νi . Since

∑
i

νi

(
∂μi

∂ξ

)
T ,p

= RT
∑

i

νi

∂ lnxi

∂ξ
= RT

∑
i

νi

[
νi

ni(0) + νiξ
− �n

n(ξ)

]
,

we have (
∂2G

∂ξ2

)
T ,p

= RT

n(ξ)

[∑
i

ν2
i

xi(ξ)
− (�n)2

]
.

To transform the sum on the right-hand side, we use the identity
∑

j xj = 1, hence

∑
i

ν2
i

xi

=
∑
i,j

ν2
i xj

xi

= 1

2

∑
i,j

(
ν2
i xj

xi

+ ν2
j xi

xj

)
= 1

2

∑
i,j

(νixj − νjxi)
2

xixj

+
∑
i,j

νiνj ,

where
∑
i,j

νiνj =
(∑

i

νi

)2

= (�n)2,

which gives

∑
i

ν2
i

xi

− (�n)2 = 1

2

∑
i,j

(νixj − νjxi)
2

xixj

≥ 0.
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Although the equality holds for xi = const × νi , this case is unphysical, however,
because the condition xi ≥ 0 is not satisfied either for reactants or products. Thus, in
the case of ideal gases, the stability condition holds for all acceptable values of the
molar fractions, which means that G is a convex function of ξ at constant T and p.

10.2 We have T = const and pV = nRT , hence

�H = �U + �(pV ) = �U + RT �n,

where �n = ∑
i νi denotes the change in the total mole number of gases in the given

reaction.

10.3 From the definition of the constant Kx(T ,p), we obtain

Kx(T ,p2)

Kx(T ,p1)
=

(
p2

p1

)−�n

.

In the first reaction, �n = 0, hence, Kx does not change. In the second reaction,
�n = −1, thus, for p2/p1 = 2, Kx at p2 is twice as big as Kx at p1.

10.4 The initial amounts of the reactants and products, expressed in moles, are:
nA(0) = 2, nB(0) = 1/3, nC(0) = 1, nD(0) = 1/2, hence (see (10.5))

nA = 2 − 3ξ, nB = 1

3
− ξ, nC = 1 + ξ, nD = 1

2
+ 2ξ.

Since all mole numbers must be positive, we obtain the condition for ξ :

−1

4
≤ ξ ≤ 1

3
,

which specifies the minimum and maximum value of the extent of reaction. Sub-
stituting ξeq = 1/4 mol, we get (in moles): nA = 5/4, nB = 1/12, nC = 5/4,
nD = 1, hence, the molar fractions in the state of chemical equilibrium amount to:
xA = 15/43, xB = 1/43, xC = 15/43, xD = 12/43. Using the law of mass action,
we get

Kx(T ,p) = xCx2
D

x3
AxB

= 27.52.

10.5 The compounds A, B and C are ideal gases, thus, the law of mass action for
this reaction has the following form:

x2
C

xAxB

= Kx = K0 = 1,

as the pressure p = p0 = 1 bar. The molar fractions depend on the extent of reac-
tion ξ :

xA(ξ) = xA(0) − x, xB(ξ) = xB(0) − x, xC(ξ) = 2x,

where x = ξ/n(0). Thus, we obtain a quadratic equation for x, i.e.,

4x2 = [
xA(0) − x

][
xB(0) − x

]
,
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which has two roots:

x = 1

6

[−1 ± √
1 + 12xA(0)xB(0)

]
.

The negative root is unphysical, because the molar fractions cannot be negative, and
for xC(0) = 0, we have xC ≥ 0 only if x ≥ 0. In case (a), xA(0) = xB(0) = 1/2,
hence xeq = 1/6, and the equilibrium molar fractions amount to: xA = xB = xC =
1/3. In case (b), xA(0) = 1/4, xB(0) = 3/4, hence, xeq = 0,134, and in chemical
equilibrium we have xA = 0.116, xB = 0.616 and xC = 0.268.

10.6 For convenience, we denote the compounds PCl5, PCl3 and Cl2, by A, B and
C, respectively. The molar mass of PCl5 amounts to MA = 208 g mol−1, hence, the
initial mole number n(0) = nA(0) = 0.91×10−2 mol. The mole number in the state
of chemical equilibrium, neq = n(ξeq), results from the ideal gas equation of state:

neq = pVeq

RT
= 0.314 × 105 × 2.4 × 10−3

8.314 × 593.15
= 1.53 × 10−2 mol.

The changes in the mole numbers of all compounds during the reaction amount to:

nA(ξ) = n(0) − ξ, nB(ξ) = ξ, nC(ξ) = ξ,

hence, n(ξ) = n(0)+ ξ and ξeq = neq −n(0) = 0.62 × 10−2 mol. The percentage of
decomposed PCl5 molecules is equal to

nA(0) − nA(ξeq)

nA(0)
= ξeq

n(0)
= 0.68,

i.e., 68 %. To calculate the equilibrium constant K0, we have to find the molar
fractions of all compounds in chemical equilibrium:

xA = nA(ξeq)

neq
= 0.190, xB = xC = ξeq

neq
= 0.405.

As in the state of chemical equilibrium we have

xBxC

xA

=
(

p

p0

)−�n

K0(T ) =
(

p

p0

)−1

K0(T ),

thus

K0(320 ◦C) = 0.314 × 0.863 = 0.271.

10.7 According to the Le Chatelier-Braun principle, in case (a) the position of
chemical equilibrium shifts in the direction of heat absorption by the system. Since
the decomposition reaction is endothermic, the equilibrium shifts in the direction
of higher products concentration, i.e., in the new equilibrium state, xA(T1,p0) <

xA(T0,p0). In case (b), the equilibrium shifts in the direction of decreasing volume.
Due to the decomposition reaction, one mole of the gas is replaced by two moles,
thus, the equilibrium shifts in the direction of higher reactant concentration, i.e.,
xA(T0,p1) > xA(T0,p0).
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10.8 If the temperatures T1 and T0 do not differ too much, then, as a first approxi-
mation, we can assume that �rH

0 is constant in the range T0 < T < T1. Then, from
the van ’t Hoff equation, we get

lnK0(T1) = lnK0(T0) +
∫ T1

T0

�rH
0

RT 2
dT = lnK0(T0) + �rH

0

R

(
1

T0
− 1

T1

)
,

and the same formula holds also for T1 < T0.

10.9 We assume that �rH
0 is independent of temperature in the temperature range

of interest, thus

ln
K0(T1)

K0(T0)
= 32000

8.314

(
1

298
− 1

310

)
= 0.50,

hence, K0(T1) = 1.65K0(T0).

10.10 Since xB = xC = (1 − xA)/2, and �n = 0, the law of mass action for this
reaction has the following form:

(1 − xA)2

4x2
A

= Kx(T ,p) = K0(T ).

We have 1 − xA = 0.40, at T1 = 300 K, and 1 − xA = 0.42, at T2 = 315 K, hence

K0(T1) = 0.111, K0(T2) = 0.131.

We calculate the enthalpy of reaction, using the formula (see Exercise 10.8)

�rH
0 = R ln[K0(T2)/K

0(T1)]
1/T1 − 1/T2

,

hence, �rH
0 = 8.68 kJ mol−1.

10.11 The law of mass action for this reaction has the following form:

(pB/p0)νB (pC/p0)νC

pA/p0
= K0(T ),

where pA = pxA, pB = pxB and pC = pxC denote the partial pressures. Substi-
tuting these expressions for the partial pressures, we obtain the law of mass action
expressed in terms of the molar fractions:

x
νB

B x
νC

C

xA

=
(

p

p0

)−�n

K0(T ) = Kx(T ,p),

where �n = νB + νC − 1. Then, we express the molar fractions, using the degree
of dissociation α. The total number of moles in the system in chemical equilibrium
amounts to

n = nA + nB + nC,

where, according to the definition of α, we have nA = ni − nd = (1 − α)ni . From
the reaction equation, it follows that nB = νBnd , nC = νCnd , hence, nB = νBαni ,
nC = νCαni and

n = (1 − α + νBα + νCα)ni = (1 + α�n)ni.



Exercises of Chapter 10 327

Substituting xA = nA/n, xB = nB/n, xC = nC/n, we get

xA = 1 − α

1 + α�n
, xB = νBα

1 + α�n
, xC = νCα

1 + α�n
.

Thus, we obtain the following relation between the degree of dissociation and the
equilibrium constant

(νBα)νB (νCα)νC

1 − α
(1 + α�n)−�n = Kx(T ,p).

When α � 1, the above expression can be simplified as follows:

Kx(T ,p) ≈ ν
νB

B ν
νC

C ανB+νC .

10.12 In this sort of problems, we treat the symbol → in the same way as the
equality sign, and add the reactions as if they were algebraic equations. The stan-
dard enthalpies of reactions are treated in the same way. It is easy to verify that
adding both sides of the first and second reaction, and then subtracting the third
reaction from the sum, we obtain the reaction of our interest. Therefore, �rH

0 for
that reaction amounts to

�rH
0 = (−1411.3 − 285.8 + 1559.8) kJ mol−1 = −137.3 kJ mol−1.

A negative value of �rH
0 means that the reaction is exothermic, because the en-

thalpy of the final state is smaller than the enthalpy of the initial state, i.e., the system
gives off heat to the surroundings.

10.13 The reaction of N2O5 formation from the elements is given by the equation

N2(g) + 5

2
O2(g) → N2O5(g).

Multiplying the first and second reaction by 2 and then adding all three reactions,
we get

2N2(g) + 5O2(g) → 2N2O5(g).

We do the same with their standard enthalpies:

(−2 × 114.1 − 110.2 + 2 × 180.5) kJ mol−1 = 2�f H 0
N2O5

,

hence, �f H 0
N2O5

= 11.3 kJ mol−1. The reaction is endothermic, since the enthalpy
of the final state of the system is bigger than the enthalpy of the initial state, i.e., the
system absorbs heat.

10.14 We substitute the enthalpies of formation of individual compounds, with the
plus sign for products and the minus sign for reactants, and with the appropriate
stoichiometric coefficient. Thus, the standard enthalpy of reaction of propane com-
bustion amounts to

�rH
0 = (−3 × 393.5 − 4 × 285.8 + 103.7) kJ mol−1 = −2220 kJ mol−1.

Note that �f H 0
O2

= 0, since O2 is an element. Before the reaction started there were
6 mol of gases and 0 mol of liquids, whereas after the reaction there are 3 mol of
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gaseous carbon dioxide and 4 mol of liquid water. The change in the volume of ideal
gases amounts to

�V = RT �n

p
= −3RT

p
= −74.3 L,

where p = 1 bar, and �n = −3 is the change in the mole number of gases. The
amount of liquid water has increased by 4 mol, i.e., by 72 g, which occupy 72 cm3.
The volume of the liquid formed in the reaction is more than 1000 times smaller
than the change in the gas volume, therefore, it can be neglected. The enthalpy
H = U +pV , hence, the change in the internal energy at constant pressure amounts
to

�U = �H − p�V = �H + 3RT = (−2220 + 7.4) kJ = −2212.6 kJ.

10.15 To obtain 1 mol of ammonia from this reaction, we have to take 2 mol of
hydrogen and nitrogen altogether. The change in the enthalpy amounts to �H =
�f H 0

NH3
= −46.1 kJ mol−1. The work done by the system per 1 mol of NH3

amounts to

W = −p�V = −RT �n = 2.5 kJ,

hence

�U = �H + W = (−46.1 + 2.5) kJ = −43.6 kJ.

10.16 We multiply the reaction of water formation by 2 and add the reaction of CO2

formation, and then subtract the reaction of methane combustion, to get the reaction
of methane formation, hence

�f H 0
CH4

= 2�f H 0
H2O + �f H 0

CO2
− �rH

0 = −74.8 kJ mol−1.

For the reaction occurs at constant pressure, the heat Q = �H , whereas for the
reaction at constant volume, Q = �U , as the system performs no work. Thus, we
have

Q = �H − �(pV ) ≈ �H − RT �n,

where �n is the increase in the total mole number of gases taking part in the re-
action. Note that if liquids or solids also take part in a given reaction, then their
contribution to pV is usually much smaller than the contribution of gases because
of their much smaller molar volumes. In the reaction considered, 2 mol of hydrogen
are replaced by 1 mol of methane, hence, �n = 1 − 2 = −1 and

Q = �f H 0
CH4

+ RT = −72.3 kJ mol−1.

10.17 We know from statistical physics (equipartition of kinetic energy) that the
molar internal energy of an ideal gas is equal to the product of RT/2 and the number
of degrees of freedom per molecule, which is treated as a solid body without internal
structure. A linear molecule has 5 degrees of freedom, hence, UA = 5nART/2 and
UB = 5nBRT/2, whereas a molecule of C has 6 degrees of freedom, hence, UC =
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3nCRT . For all ideal gases, the equation of state has the same form: pV = nRT .
For the molar enthalpies of individual gases, we get

hA = hB = 7

2
RT, hC = 4RT,

hence, we calculate the molar heat capacity at constant pressure, cp , differentiating
the enthalpy with respect to T :

cp,A = cp,B = 7

2
R, cp,C = 4R.

Thus, cp depends neither on pressure nor temperature. For �rc
0
p , we have

�rc
0
p = 3cp,C − 2cp,A − cp,B = 3

2
R.

Integrating the Kirchhoff equation, we get (see (10.55))

�rH
0(T2) = �rH

0(T1) + 3

2
R(T2 − T1).

Substituting T1 = 298 K and T2 = 340 K, we obtain

�rH
0(340 K) = −19.48 kJ mol−1.

10.18 The number of components in the system C = 3 and one chemical reaction
takes place, hence, R = 1. The substance D is a gas, and the substances A and B

are liquids. In case (1), A and B form a homogeneous mixture, thus, the number of
phases P = 2. In case (2), A and B form two liquid phases, which are in equilibrium
with the gaseous phase, thus, P = 3. The number of independent parameters in the
system is the number of degrees of freedom, f = C + 2 − P − R. In case (1),
f = 3 + 2 − 2 − 1 = 2, and in case (2), f = 3 + 2 − 3 − 1 = 1.

10.19 The liquids A and B form an ideal solution, thus, Raoult’s law can be ap-
plied to them, i.e., pA = p∗

A(T )xA, pB = p∗
B(T )xB , where pA and pB denote the

partial pressures of the vapour above the solution. The chemical potentials of the
components of the ideal solution are given by

μA(l) = μ∗
A(l) + RT lnxA, μB(l) = μ∗

B(l) + RT lnxB,

where μ∗
A(l) and μ∗

B(l) are the chemical potentials of pure liquids A and B . Making
use of Raoult’s law (see Sect. 8.1.1), we get for the liquid–vapour coexistence:

μA(l) = μA(g) = μ0
A + RT ln

pA

p0
= μ∗

A(T ) + RT lnxA,

where μ∗
A(T ) denotes the chemical potential of pure substance A on the liquid–

vapour coexistence line. An analogous relation holds for the component B , i.e.,

μB(l) = μ∗
B(T ) + RT lnxB.

The component C is an ideal gas, thus

μC = μ0
C(T ) + RT ln

pC

p0
.
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The condition of chemical equilibrium adopts the following form:

μA(l) − μB(l) − μC(g) = μ∗
A(T ) − μ∗

B(T ) − μ0
C(T ) + RT ln

xAp0

xBpC

= 0.

Using the equilibrium constant defined by

μ∗
A(T ) − μ∗

B(T ) − μ0
C(T ) = RT lnK(T ),

we obtain the law of mass action:
xB(pC/p0)

xA

= K(T ).

The total pressure of the gaseous phase above the solution, p, is the sum of three
partial pressures:

p = pA + pB + pC = p∗
AxA + p∗

BxB + pC.

As the presence of the component C in the solution can be neglected, we have

xA + xB + xC ≈ xA + xB = 1.

Substituting this relation into the law of mass action, we get

(1 − xA)pC = p0K(T )xA,

hence

xA = pC

p0K + pC

, xB = p0K

p0K + pC

.

Finally, we obtain

p = p∗
ApC + p∗

Bp0K

p0K + pC

+ pC.

According to the phase rule, we have f = C + 2 − P − R = 3 + 2 − 2 − 1 = 2. In
this case, the independent parameters are T and pC .

10.20 First, we write the condition of chemical equilibrium (see Exercise (10.11)):

μCuO(s) + μH2(g) − μCu(s) − μH2O(g) = 0,

where

μH2(g) = μ0
H2

+ RT ln
pH2

p0
, μH2O(g) = μ0

H2O + RT ln
pH2O

p0
.

Cu and CuO are pure substances in the solid phase. We recall that in general we
can express the chemical potential of the i-the component in terms of its activity
(see (7.116)), i.e.

μi = μ0
i (T ) + RT lnai.

In the case of a pure substance, μi = μ∗
i depends on temperature and pressure.

However, liquids and solids are hardly compressible, therefore, the dependence of
the chemical potential on pressure is often neglected, provided the pressure p does
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not differ too much from the standard pressure p0. In the case of chemical reactions,
it is usually assumed that the activity of a pure liquid or solid is equal to unity. Thus,
for the reaction considered, we have a∗

CuO(s) = 1, a∗
Cu(s) = 1, and the condition of

chemical equilibrium adopts the following form:

μ0
CuO + μ0

H2
− μ0

Cu − μ0
H2O + RT ln

pH2

pH2O

= 0,

where the standard chemical potentials depend only on temperature. According to
the definition of the standard equilibrium constant, we have

μ0
CuO + μ0

H2
− μ0

Cu − μ0
H2O = RT lnK0.

Finally, we get
pH2O

pH2

= K0.

This is the condition of chemical equilibrium for the reaction considered.

Exercises of Chapter 11

11.1 In the case of the first reaction, we have 4 components, that is, we neglect dis-
sociation of water and assume that activity of water aH2O = 1. Ammonia is treated
as an ideal gas, thus,

μNH3(g) = μ0
NH3

+ RT ln
pNH3

p0
,

where pNH3 is the partial pressure of ammonia above the solution. The chemical
potentials of the ions are expressed in terms of their activities:

μNH+
4

= μ0
NH+

4
+ RT lnaNH+

4
, μOH− = μ0

OH− + RT lnaOH− .

Therefore, the condition of chemical equilibrium adopts the following form:

(aNH+
4
)(aOH−)p0

pNH3

= K0.

The second reaction concerns a saturated solution of slightly soluble salt, which
means that we have coexistence of practically pure crystalline salt with aqueous
solution of that salt. It can be assumed that the activity of the solid is equal to unity,
hence, only the activities of the ions appear in the condition of chemical equilibrium,
i.e.,

(aBa2+)(aSO2−
4

) = K0.

Since the salt is slightly soluble, its concentration in the solution is small. In the
case of electrolytes, such as aqueous solutions of salt for instance, the solute whose
concentration in the solution is small is practically completely dissociated. Thus,
the equilibrium constant K0 is a measure of solubility of the salt in water. For this
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reason, it is called the solubility constant or solubility product of the salt, and is
denoted by Ks . It can be easily understood if we replace the activity with the molar
concentration, which is justified in the case of strong dilution. Then we have[

Ba2+][
SO2−

4

] = Ks,

and because [Ba2+] = [SO2−
4 ], the molar concentration of each ion amounts to

K
1/2
s . Thus, the constant Ks provides information about solubility of the salt in

water.

11.2 Expressing the chemical potential in terms of the activity, we write the condi-
tion of chemical equilibrium as follows:

μ0
AxBy

+ RT lnaAxBy − x
(
μ0

A + RT lnaA

) − y
(
μ0

B + RT lnaB

) = 0.

Assuming that the activity of the pure solid aAxBy = 1, we obtain the following form
of the equilibrium condition:

ax
Aa

y
B = Ks,

where Ks denotes the equilibrium constant of the reaction considered. It is a general-
ization of the solubility product considered in Exercise 11.1. Applying this formula
to aqueous solution of the salt Ag2CO3, which dissociates according to the equation

Ag2CO3(s) � 2Ag+(aq) + CO2−
3 (aq),

we get

Ks = (aAg+)2(aCO2−
3

) ≈ [
Ag+]2[CO2−

3

]
.

For each CO2−
3 ion, there are two Ag+ ions, hence, [Ag+] = 2[CO2−

3 ] and we get

4
[
CO2−

3

]3 = Ks = 6.2 × 10−12,

i.e., [CO2−
3 ] = 1.16 × 10−4 mol L−1 and [Ag+] = 2.32 × 10−4 mol L−1.

11.3 We use relation (11.84) between the standard potential and equilibrium con-
stant:

E0 = RT

nF
lnK0,

where F = 9.6485 × 104 C mol−1, and n = 2. The standard potential E0 = 0.339 −
(−0.763) V = 1.102 V, and the coefficient RT/nF amounts to

RT

nF
= 8.314 × 298

2 × 9.6485
× 10−4 J C−1 = 1.284 × 10−2 V,

hence

K0 = eE0nF/RT = e85.8 = 1.8 × 1037.

Thus, the equilibrium constant of this reaction is very big.
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This exercise can also be solved in a different way. We have E0 = E0
R − E0

L,
where E0

R = 0.339 V, E0
L = −0.763 V and

E0
R = RT

nF
lnK0

R, E0
L = RT

nF
lnK0

L.

K0
R and K0

L denote the standard equilibrium constants for the reactions in cells
consisting of the copper and zinc electrode, respectively, in one half-cell and the
standard hydrogen electrode. Thus, we have

RT

nF
lnK0 = RT

nF
lnK0

R − RT

nF
lnK0

L,

hence, K0 = K0
R/K0

L. Substituting the data, we get

K0
R = eE0

RnF/RT = e26.4 = 2.9 × 1011,

K0
L = eE0

LnF/RT = e−59.4 = 1.6 × 10−26,

which gives K0 = 1.8 × 1037.

11.4 46 g of Na correspond to 2 mol, thus, to obtain this amount of sodium at the
cathode, an electric charge of 2 mol of electrons (according to the reaction 2Na+ +
2e− → 2Na) must flow through the salt, i.e.,

F × 2 mol = 1.9297 × 105 C.

Since 1 A = 1 C s−1, the current of 10 A must flow during

1.9297 × 104 C A−1 = 19297 s ≈ 5.36 h.

During this time 1 mol of gaseous chlorine is produced at the anode, because each
Cl2 molecule provides 2 electrons, donated by 2 Cl− ions, and the charge F ×2 mol
has flowed. Therefore, we obtain 70.9 g of chlorine at the anode.

11.5 To solve this problem, the relation between the enthalpy of reaction and
the potential difference of the cell is to be found. To do this, we use the equality
(see (11.77))

�G = −EnF�ξ,

which holds if E does not change during the cell reaction. The change in the en-
thalpy is obtained from the relation

G = H − T S = H + T
∂G

∂T
,

hence, for T = const, we get

�H = �G − T
∂�G

∂T
,

where we differentiate at constant p and ξ . Substituting the expression for �G, we
get

�H = nF

[
T

(
∂E

∂T

)
p

− E

]
�ξ.
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The same relation must hold for the differentials, i.e.,

dH = nF

[
T

(
∂E

∂T

)
p

− E

]
dξ.

The enthalpy of reaction at constant pressure is equal to the change in the enthalpy
per mole of reaction, i.e., (∂H/∂ξ)T ,p . Thus, the relation between the enthalpy of
reaction and the potential difference of the cell has the following form:(

∂H

∂ξ

)
T ,p

= nF

[
T

(
∂E

∂T

)
p

− E

]
.

Now we can substitute the data for the temperature of 0 ◦C (T = 273.15 K), which
gives (

∂H

∂ξ

)
T ,p

= −2 × 96485
(
273.15 × 4.02 × 10−4 + 1.015

)
C V mol−1

= −217.05 kJ mol−1.

The maximum work (not related to a change in volume) which can be obtained from
a reversible cell at constant temperature and pressure is equal to �G. The part of the
enthalpy of reaction which cannot be changed into work is equal to the difference

�H − �G = T �S = −T
∂�G

∂T
= nFT

(
∂E

∂T

)
p

�ξ.

Taking the limit of infinitesimal changes, we get, per 1 mol of reaction,

T

(
∂S

∂ξ

)
T ,p

= nFT

(
∂E

∂T

)
p

= −21.19 kJ mol−1.

It is about 10 % of the enthalpy of reaction. The remaining 90 % can be used to per-
form work, for instance, by an electric engine. This is the maximum value, which
cannot be exceeded because of limitations resulting from the laws of thermodynam-
ics. Note, however, that the electric current obtained from the cell can be used in
an electric heater, instead of performing work. Then, 100 % of the energy obtained
from the chemical reaction can be changed into heat, and 10 % of that heat comes
from the change in the entropy of the system, which decreases (the system gives off
heat). The remaining part is the heat produced during the flow of electric current
through the heater.

11.6 In the reaction, gaseous hydrogen at the pressure pH2 and hydrogen ions of the
activity aH+ take part. The expression for the potential of the half-cell can be derived
in a similar way as for a metal electrode in equilibrium with its ions (see (11.89) and
(11.90)). We only have to take into account different stoichiometric coefficients and
replace the activity with the ratio pH2/p

0 in the case of gaseous hydrogen, which is
treated as an ideal gas. For the reaction

H+(aq) + e− � 1

2
H2(g)
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the coefficient at gaseous hydrogen amounts to 1/2, hence

EH2 = E0
H2

− RT

nF
ln

(pH2/p
0)1/2

aH+
,

where n = 1. In accord with the definition of the standard hydrogen electrode, we
assume that E0

H2
= 0, hence

EH2 = −RT

F
ln

(pH2/p
0)1/2

aH+
.

If the activity of hydrogen ions is fixed, and the pressure of gaseous hydrogen
changes from pH2 = p1 to pH2 = p2, then the change in EH2 amounts to

�EH2 = EH2(p2) − EH2(p1) = RT

2F
ln

p1

p2
.

If the pressure is fixed, and the activity of hydrogen ions changes from aH+ = a1 to
aH+ = a2, then

�EH2 = EH2(a2) − EH2(a1) = RT

F
ln

a2

a1
.

At the temperature T = 298.15 K, we have RT/F = 0.0257 V. In case (1), we get
p1/p2 = 9 = 32, and in case (2), we get a2/a1 = 3. Thus, in both cases, we have

�EH2 = RT

F
ln 3 = 0.0282 V.

11.7 We use expression (11.94) for the redox potential. Since the reduced form
corresponds to pure zinc in the solid phase, we have aRed = aZn = 1, hence

EZn = E0
Zn + RT

2F
lnaZn2+ =

(
−0.763 + 1

2
0.0257 × ln 0.1

)
V

= −(0.763 + 0.0296) V = −0.7926 V.

11.8 Adding the reactions in the half-cells, we obtain the total cell reaction

1

2
H2(g) + AgCl(s) � Ag(s) + H+(aq) + Cl−(aq).

The potentials of the half-cells are given by the following expressions (see Exer-
cise 11.6):

EH2 = −RT

F
ln

(pH2/p
0)1/2

aH+

and

EAg|AgCl = E0
Ag|AgCl −

RT

F
ln

(
aAgaCl−

aAgCl

)
.

Since the activities of pure solids, aAg and aAgCl, can be omitted as equal to 1, the
potential of the cell amounts to

E = E0
Ag|AgCl −

RT

F
ln

(aH+)(aCl−)

(pH2/p
0)1/2

.
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We know that the activities of anions and cations cannot be measured separately,
but only their product can be determined (see Sect. 11.1.2). Using the molality as a
measure of concentration, we have aH+ = γ+m+/m0, aCl− = γ−m−/m0, hence

(aH+)(aCl−) = aHCl = γ 2±
(
m/m0)2

,

where γ 2± = γ+γ−, and m = m+ = m−, as the molality of both ions is the same. For
the pressure pH2 = p0, we can write

E + 2RT

F
ln

m

m0
= E0

Ag|AgCl −
2RT

F
lnγ±.

The left-hand side of this equation contains quantities which are determined experi-
mentally: the cell potential E and the molality m. It means that we can calculate the
average activity coefficient of ions for the electrolyte, γ±, provided that we know
the standard potential E0

Ag|AgCl. On the other hand, the standard potential can be
determined from the measurement of the cell potential for dilute solutions. Since
γ± → 1 when m/m0 → 0, the left-hand side of the equation must tend to the con-
stant E0

Ag|AgCl if we extrapolate to m = 0.
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of component in ideal mixture, 166
of ideal gas, 71
of solute in dilute solution, 172
of solvent, 174

Chemical reaction, 49, 85
equation, 225, 226, 234

Clapeyron equation, 138
Clausius–Clapeyron equation, 140
Closed system, 9
Colligative properties, 197
Component, 151, 239
Compound, 239
Compressibility

adiabatic, 110
isothermal, 108

Condensation line, 138
Conjugate acid–base pair, 250
Continuous phase transition, 124, 125
Counter ions, 248
Critical

opalescence, 142
phenomena, 126
point, 126, 132, 146
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Critical (cont.)
pressure, 132, 147
temperature, 132, 147

of solution, 210
Cryoscopic constant, 192
Curie temperature, 125

D
Dalton’s law, 165
Daniell cell, 253
Debye screening length, 249
Debye–Hückel limiting law, 249
Degrees of freedom

of molecule, 29
of system, 176

Deposition line, 138
Dew point

curve, 204
isobar, 205, 206, 208
isotherm, 205–208

Diathermal wall, 9
Diesel cycle, 81
Differential, 15

form, 17
Dilute solution, 152, 172
Dissociation, 245

degree, 246
Distillation, 186

of azeotropic mixture, 207
Donor, 250

E
Ebullioscopic constant, 189
Ehrenfest classification, 127
Electric

neutrality, 245
potential difference, 256

Electrochemical
cell, 253
series, 260

Electrolysis, 255
Electrolyte, 245
Electrolytic cell, 255
Electronegative metal, 261
Electropositive metal, 260
Endothermic

process, 211
reaction, 227

Enthalpy, 43, 93, 109, 154
natural variables, 98
of evaporation, 140
of ideal gas, 99
of melting, 139
of mixing, 164

of reaction, 227
of sublimation, 140

Entropy, 6, 57
maximum principle, 61
mechanical-statistical definition, 63
of ideal gas, 70
of mixing, 164
of van der Waals gas, 144

Equation of state, 29
Dieterici’s, 148
of ideal gas, 29, 32
of photon gas, 31, 32
van der Waals’, 31, 32, 143

Equilibrium
constant, 232
state, 7
with respect to matter flow, 65

Euler relation, 69, 153
Eutectic

point, 194
system, 220

Evaporation, 48, 74, 123
line, 138

Excess
chemical potential, 203
functions, 175
Gibbs free energy, 204

Exothermic
process, 212
reaction, 227

Extensive parameter, 11
Extent of reaction, 226

F
Fahrenheit scale, 24
Faraday constant, 249
Ferromagnetic phase, 125
Fractional crystallization, 219
Free gas expansion, 84, 112
Freezing, 123

line, 138
point

curve, 219
depression, 192, 197

Fugacity
coefficient, 170
of gas in mixture, 169
of pure gas, 168

Functions of mixing, 163
for ideal gases, 166

Fundamental
equations of chemical thermodynamics,

154
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Fundamental (cont.)
postulate of thermodynamics, 8
relation, 67, 89, 153

G
Galvanic cell, 255
Gas constant, 26
Gibbs free energy, 93, 107, 154

minimum principle, 104
natural variables, 98
of ideal gas, 99
of mixing, 164

Gibbs–Duhem equation, 94, 155
at constant temperature and pressure, 156

Gibbs–Helmholtz relation, 187
Grand thermodynamic potential, 95

natural variables, 98
of ideal gas, 100

H
Half-cell, 254

potential, 259
Heat, 10, 16, 40

capacity, 42
at constant pressure, 43, 108
at constant volume, 42
relation to entropy, 71

devices, 75
engine, 75

efficiency, 76
of transition, 125
pump, 80

efficiency, 80
reservoir, 75

Helmholtz free energy, 92, 108, 154
minimum principle, 101
natural variables, 97
of ideal gas, 99
of van der Waals gas, 145

Henry constant, 190
Henry’s law, 190, 201
Hess’ law, 234
Heteroazeotrope, 217
Heterozeotropic mixture, 217
Homoazeotrope, 218
Hydronium ion, 250
Hydroxide ion, 250

I
Ideal

dilute solution, 190
gas, 30
mixture, 167, 181
solubility, 193

solution, 152, 167
Intensive parameter, 10, 20
Internal energy, 9, 19, 39, 110, 153

differential, 41
natural variables, 97
of ideal gas, 29
of mixing, 164
of photon gas, 31
of van der Waals gas, 31

Intrinsic stability
of mixture, 156, 205
of pure substance, 115

Inversion temperature, 114
Ion product of water, 251
Ionic strength, 249
Irreversible process, 13

change in entropy, 82
Isobaric process, 11, 43, 73
Isochoric process, 11, 41, 73
Isolated system, 9
Isothermal process, 11

irreversible, 47
reversible, 47, 72

J
Joule, 43
Joule–Thomson process, 113

K
Kelvin, 25
Kelvin scale, 25
Kirchhoff equation, 237

L
Lambda transition, 136
Law of mass action, 232, 258
Laws of thermodynamics

first law, 40
second law, 58
third law, 85
zeroth law, 23

Le Chatelier–Braun principle, 230
Legendre transformation, 89

definition, 90
of entropy, 96
of internal energy, 91

Lever rule, 129, 130, 141, 185
Liquid composition line, 183
Liquid–gas coexistence, 140
Liquid–vapour

equilibrium, 181
phase diagram

at constant pressure, 185
at constant temperature, 183
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M
Macroscopic system, 7
Massieu functions, 96
Maxwell

construction, 146, 216
relations, 107

Mechanical
equilibrium, 65
stability, 117

Melting, 123, 125
line, 132, 138
point, 134, 139

curve, 219
Metastable states, 128
Millimeter Hg, 22
Miscibility

curve, 210
gap, 201, 210

in simple solutions, 213
Mixture, 151

ideal, 167, 181
of ideal gases, 164
real, 168, 201

Molality, 153
Molar

concentration, 152
fraction, 152, 154

Mole, 18
number, 18

N
Natural variables, 89, 97
Nernst equation, 258

O
Order parameter, 126
Order-disorder transition, 126
Osmotic

equilibrium, 196
pressure, 28, 196, 198

Ostwald absorption coefficient, 191
Otto cycle, 81
Oxidation, 254

P
Paramagnetic phase, 125
Partial

molar entropy, 162
molar quantity, 160
molar volume, 161
pressure, 165

Pascal, 21
Perfect blackbody, 26
PH, 251

Phase, 123
coexistence, 125, 127, 131

conditions, 128, 176
line, 128, 138

diagram, 132
of 4He, 135
of simple eutectic, 195
of typical substance, 132
of water, 134

rule, 176
for chemical systems, 238

transition, 124
of first order, 124
of second order, 124

Photon gas, 31
Pressure, 21
Principle of corresponding states, 147
Product of reaction, 225
Pyrometer, 27

Q
Quasi-static

heat, 17, 64
process, 12
work, 17, 257

R
Radiator, 75
Raoult’s law, 181

derivation, 182
deviations from, 201, 202

Reactant, 225
Redox potential, 259
Reduced variables, 147
Reduction, 254
Refrigerator, 79

efficiency, 80
Reversible

cell, 256
flow of heat, 64
process, 13
work source, 45

S
Salt bridge, 255
Saturated

solution, 193
vapour, 48, 133, 141

Screening, 248
Simple

eutectic, 194
solution, 203

Solid solution, 218
Solid–gas coexistence, 140
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Solid–liquid coexistence, 139
Solubility line, 193
Solute, 152
Solution, 152
Solvent, 152
Standard

cell potential, 258
enthalpy

of formation, 235
of reaction, 233

equilibrium constant, 231
Gibbs free energy of reaction, 231
hydrogen electrode, 260
pressure, 165
state, 166

of gas, 166
of pure substance or solvent, 170
of solute, 174

State function, 10
State parameter, 10
Steam engine, 81
Stefan–Boltzmann law, 26
Stoichiometric coefficient, 225
Sublimation, 123, 125

line, 138
Subsystem, 10
Super-cooled liquid, 128
Super-critical phase, 133
Super-heated liquid, 128
Super-saturated vapour, 128
Surroundings, 9
System, 9

T
Temperature

absolute, 25
empirical, 23

Thermal
equilibrium, 23, 61
expansion coefficient, 25, 108
stability, 117

Thermodynamic
equilibrium, 7

conditions, 61
potentials, 89, 154

for ideal gas, 98
process, 11
temperature, 25, 63, 77

Thermometer
mercury, 24
platinum, 25

Thermopile, 25
Torr, 22
Triple point, 131, 132

of CO2, 134
of water, 131

V
Van ’t Hoff equation, 233
Vapour, 48

composition line, 183
pressure depression, 197

Volume, 17
of mixing, 164

W
Wall, 9
Work, 10, 16

chemical, 40
mechanical, 39

Working substance, 75

Z
Zeotropic mixture, 205, 206
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