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Controllable, quantum-coherent systems of ultracold atoms1,2, 
trapped ions3 and nitrogen-vacancy spins in diamond4 have 
emerged as platforms for realizing and probing highly non-

equilibrium quantum matter. In particular, these systems have 
opened the door to the investigation of non-ergodic dynamics in 
isolated quantum systems. Such an unusual kind of dynamics is now 
known to occur when there is an emergence of many conserved 
quantities, such as in integrable systems5 and many-body localiza-
tion6–8. In both cases, the system strongly violates the ‘eigenstate 
thermalization hypothesis’ (ETH)9,10, which was conjectured to gov-
ern the properties of ergodic systems and their approach to thermal 
equilibrium. This motivates the question: are there systems that only 
weakly break ergodicity? In particular, are there systems in which 
some eigenstates are atypical and dynamics strongly depends on the 
initial conditions? The existing theoretical studies, which tested the 
ETH numerically in systems of spins, fermions and bosons in one-
dimensional (1D) and two-dimensional (2D) systems11,12 seem to 
rule out such a possibility. In particular, an earlier study13 found that 
in an ergodic spin chain, all highly excited states were typical and 
thermal, obeying the strong version of the ETH.

In this paper we demonstrate that weak breaking of ergodicity 
can occur in kinetically constrained 1D models that are reminis-
cent of the effective models describing the interactions between 
anyon excitations in 2D topological phases of matter, such as frac-
tional quantum Hall states14. Topological order in these systems is 
connected with emergent gauge fields, such that their many-body 
Hilbert space cannot be decomposed as a tensor product of local 
Hilbert spaces. Although models of this type have been theoretically 
investigated15–22, recent works23–25 demonstrate that they can also 
be realized in experiments with Rydberg atoms in 1D or 2D traps.  
We focus on the simple example of a 1D chain (with the Hamiltonian 
defined in equation (1) below) whose constrained Hilbert space 
grows in the Fibonacci sequence, and therefore below we refer to 
this system as a ‘Fibonacci chain’.

Our results for the non-ergodic dynamics in the Fibonacci chain 
can be summarized as follows. First, based on the energy level sta-
tistics, we find that the model exhibits level repulsion and is non-
integrable. Second, we show that the model has a band of special 
eigenstates coexisting with thermalizing eigenstates in the middle 
of the many-body band. Surprisingly, even though the special 
eigenstates comprise only a vanishing fraction of all states in the 
thermodynamic limit, they have direct physical manifestations, and 
they can be accessed by preparing the system in specific product 
states. In particular, the band of special eigenstates underlies the 
unexpected long-duration oscillations observed experimentally25. 
Finally, we shed light on the structure of special eigenstates by intro-
ducing an effective tight-binding model. This allows us to obtain 
accurate numerical approximations of special eigenstates by solving 
the problem of a single particle hopping on a Hilbert space graph.

The existence of a band of special eigenstates is strongly remi-
niscent of the phenomenon of quantum scars in single-particle 
chaotic billiards26, which have been observed in microwave cavi-
ties27 and quantum dots28. In the context of single-particle quantum 
chaos, scars represent a concentration of some eigenfunctions along 
the trajectory of unstable classical periodic orbits. In our study of a 
many-body system, strong revivals arise due to the existence of an 
analogous trajectory in the Hilbert space that includes two particular 
product states. We show that this periodic orbit ‘scars’ a subset of 
eigenstates that form a special band. Analogous to the single-par-
ticle case, these eigenstates are concentrated in parts of the Hilbert 
space. Our effective tight-binding approach sheds light on the struc-
ture of scarred eigenstates and, correspondingly, the structure of the  
periodic orbit.

Model
In the experiment25, a chain of Rydberg atoms was realized in which, 
effectively, excitations were created/annihilated with equal ampli-
tudes. In the limit where the nearest-neighbour interaction is much 
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larger than the detuning and the Rabi frequency, the system is mod-
elled by the following spin-1/2 Hamiltonian16,

∑=
=

+ +H PX P (1)
i

L

i i i
1

1 2

where Xi, Yi, Zi are the Pauli operators, L denotes the length of the 
chain and we work in units ħ =  1. In what follows, we use ∣∘⟩  to refer 
the ground state and ∣∙⟩  to refer to the Rydberg state of a single 
atom. The operator Xi =  ∣∘⟩ ⟨∙∣ + ∣∙⟩ ⟨∘∣  creates or removes an exci-
tation at a given site, and projectors = ∣∘⟩ ⟨∘∣Pi  =  (1 −  Zi)/2, written 
in terms of Zi =  ∣∙⟩ ⟨∙∣−∣∘⟩ ⟨∘∣ , ensure that the nearby atoms are not 
simultaneously in the excited state. For example, P1X2P3 acting on 
∣∘∘∘⟩  gives ∣∘∙∘⟩  (and vice versa), while it annihilates any of the con-
figurations ∣∙∘∘⟩ , ∣∘∘∙⟩ , ∣∙∘∙⟩ .

The presence of projectors in the Hamiltonian (equation (1)) 
does not allow for relaxation of several adjacent Rydberg atoms. 
In other words, configurations ∣…∙∙…⟩  are ‘dark states’ breaking 
our chain into two disconnected parts. Hence, such configura-
tions are excluded in what follows and we consider a constrained 
Hilbert space without any adjacent Rydberg atoms. Such a con-
straint makes the Hilbert space identical to that of chains of non-
Abelian Fibonacci anyons, rather than spins-1/2 or fermions. For 
periodic boundary conditions (PBC), the Hilbert space dimension 
is equal to D =  FL−1 +  FL+1, where Fn is the nth Fibonacci number. For 
instance, in the case of the L =  6 chain we have D =  18, as shown in 
Fig. 1. For open boundary conditions (OBC), D scales as FL+2. Thus, 
the Hilbert space is evidently very different from, for example, the  
spin-1

2
 chain where the number of states grows as 2L.

The model in equation (1) is particle–hole symmetric: an opera-
tor = ∏P Zi i anticommutes with the Hamiltonian, PH =  − HP, and 
therefore each eigenstate ψ∣ ⟩  with energy E ≠  0 has a partner ψ∣ ⟩P  
with energy − E. Furthermore, the model has spatial inversion 
symmetry I which maps i →  L −  i +  1. In addition, with PBC, this 
model has translation symmetry. In what follows, unless specified 
otherwise, we restrict ourselves to PBC (thus identifying i =  L +  1 
and i =  1) and explicitly resolve translation and inversion symme-
tries which allow us to fully diagonalize systems of up to L =  32 sites 
(with +D0  =  77,436 states in the zero-momentum inversion-sym-
metric sector).

Experiment25 and numerical simulations on small systems29 
revealed that the relaxation under unitary dynamics specified by 
the Hamiltonian (equation (1)) strongly depends on the initial state 
of the system. In particular, starting from period-2 charge density 
wave states

Z Z∣ ⟩ = ∣∙∘∙∘…⟩ ∣ ⟩ = ∣∘∙∘∙…⟩′, (2)2 2

that are related by a translation by one lattice period, the system 
shows surprising long-time oscillations of local observables for long 
chains of up to L =  51 sites. Although this might suggest that the sys-
tem is non-ergodic, it was also observed that the initial state with all 
atoms in the state ∣∘⟩  shows fast relaxation and no revivals, charac-
teristic of thermalizing systems. Given that the model in equation (1)  
is translation invariant and has no disorder, many-body localization 
cannot be at play. Below we explain the origin of the observed oscil-
lations and the apparent non-ergodic dynamics.

Dynamics
We start by characterizing the dynamical evolution of the model 
in equation (1) for different initial conditions. Motivated by 
experiment25, we consider a family of charge density wave states 
Z∣ ⟩k  =  ∣…∙∘…∘∙…⟩ , where the atoms in excited states are separated 

by k −  1 atoms in the ground state, as well as the fully polarized state 
∣…∘∘∘…⟩ ≡ ∣ ⟩0 . We use the infinite time evolving block decima-
tion (iTEBD) method, which provides results valid in the thermo-
dynamic limit up to some finite time30. The bond dimension used is 
400, which limits the evolution time to t ~ 30.

Figure 2a reveals linear growth of entanglement entropy evalu-
ated for the midpoint bipartition for all considered initial states. 
Yet, the slope of entanglement growth strongly depends on the 
initial state, with the slowest growth observed when the system is 
prepared in the period-2 density wave state, Z∣ ⟩2 , in equation (2).  
In addition, the entanglement growth has weak oscillations on 
top of the linear growth. Relative to the magnitude of entropy, the 
oscillations are most significant for the Z∣ ⟩2  initial state. Figure 2b  
illustrates the oscillations in entanglement by subtracting the lin-
ear component. We note that the oscillations are periodic with 
the period Z ≈ .T 2 35

2
, in agreement with ref. 25. Similarly, periodic 

oscillations are clearly visible in the local correlation function, 
⟨ ⟩+Z Zi i 1  (Fig. 2c). The oscillations that persist for long times when 
the entanglement light-cone reaches a distance of ≳ 20 sites, as evi-
denced by the correlation function, are highly unusual. Although 
experimental work25 presented a variational ansatz capturing these 
oscillations, below we demonstrate that the oscillations actually 
arise due to the existence of special eigenstates within the rest of the 
many-body spectrum.

Special states
The special eigenstates become clearly visible when one arranges 
the entire many-body spectrum according to the overlap with 
the density-wave Z∣ ⟩2  state, as shown in Fig. 3a. This reveals the  
‘Z2-band’ of special eigenstates, which are distinguished by atypically  

0 1 2 3 4 5 6 Dz2

Fig. 1 | The hilbert space graph of the Fibonacci chain with L = 6 sites. 
The nodes of the graph label the allowed product states, while the edges 
connect configurations that result from a given product state due to the 
action of the Hamiltonian. Nodes of the graph are grouped according to the 
Hamming distance ZD

2
 from the Z∣ ⟩2  state.
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Fig. 2 | Periodic revivals in the dynamics of entanglement entropy and 
local correlation function. a, Entanglement entropy for the midpoint 
bipartition displays linear growth starting from various initial density-wave 
product states, as well as the fully polarized ∣ ⟩ ∣ ∘∘∘ ⟩= … …0  state. b,c, For 
the Z∣ ⟩2  initial state the entanglement entropy oscillates around the linear 
growth with the same frequency as the local correlation functions.
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high overlaps with the Z∣ ⟩2  product state. The energy separation 
between states stays approximately constant near the centre of the 
band and is given by Ω ≈  1.33. This energy separation matches half 
the frequency of the real-time oscillations observed in the iTEBD 
numerical simulations in Fig. 2. The factor of two comes from the 
fact that the measured correlator does not distinguish between the 
Z∣ ⟩2  and Z∣ ⟩′

2  states.
Next, we show that it is possible to construct accurate approxi-

mations to the entire band of special states. This is surprising 
because the model in equation (1) is not frustration free; hence 
even its ground state cannot be exactly expressed as a matrix prod-
uct state with bond dimension equal to 2 (ref. 31). Remarkably, the 
eigenstates in the Z∣ ⟩2 -band can still be accurately described within 
an effective tight-binding approximation. In this effective descrip-
tion, a ‘site’ will turn out to be a superposition of product states at a 
fixed Hamming distance ZD

2
 from the Z∣ ⟩2  product state, which is 

defined as the minimum number of spin flips required to transform 
those states into Z∣ ⟩2  (see Fig. 1). Despite the apparent simplicity 
of this representation, special eigenstates have larger than area-law 
entanglement entropy and cannot be expressed as matrix product 
states of finite bond dimension, in contrast to the states considered 
in ref. 32.

We start by splitting the Hamiltonian as H =  H+ +  H−, where we 
have introduced the operator

∑ ∑σ σ= ++

∈
−

+
+

∈
−

−
+H P P P P (3)

i
i i i

i
i i i

even
1 1

odd
1 1

with σ = ∣∙⟩ ⟨∘∣+
i  and σ = ∣∘⟩ ⟨∙∣−

i . This decomposition reflects 
the fact that H+ increases ZD

2
 by one (similarly, H− lowers ZD

2
).  

To derive the tight-binding model, we want to construct a basis ∣ ⟩n{ }  
in which the Hamiltonian in equation (1) is tridiagonal. We pro-
ceed iteratively, starting from the initial state ∣ ⟩0  =  Z∣ ⟩2 , and prop-
agating forward by the application of H+; that is, ∣ ⟩n  =  Z∣ ⟩+H( ) n

2 / 
Z∥ ∣ ⟩∥+H( ) n

2 . We dub this method the ‘forward scattering 
approximation’ (FSA). As suggested by the notation, the basis vec-
tors of the FSA can be labelled by the Hamming distance n from 
the initial Z∣ ⟩2  state. This is possible because, for the model in 
equation (1) and the chosen initial state, there is no intersection 
between the product state supports of different FSA vectors ∣ ⟩n ,  
∣ ⟩m  for m ≠  n. Another special feature, due to the fact that the 
Hamming distance must be n ≤  L, is that the FSA basis must con-
tain exactly L +  1 vectors.

The FSA results in a tridiagonal matrix which is the effective 
tight-binding Hamiltonian that describes the band of special states 
in Fig. 3a,

∑ β= ∣ ⟩ ⟨ + ∣ + . .
=

H n n( 1 h c ) (4)
n

L

nFSA
0

where h.c. stands for Hermitian conjugate and the hopping ampli-
tude is given by

β = ⟨ + ∣ ∣ ⟩ = ⟨ ∣ ∣ + ⟩+ −n H n n H n1 1 (5)n

Although equations (4) and (5) are formally reminiscent of the 
Lanczos recurrence, in the latter case the initial vector can be 
arbitrary and the propagation is instead performed by the full 
Hamiltonian. In the Methods section we discuss the approximation 
involved in the FSA and estimate the associated errors to be less 
than 1% for chains of L =  32 sites.

Finally, we compare the eigenstates of HFSA with exact eigen-
states from the special band obtained numerically in the L =  32 
chain with PBC. In Fig. 3b we observe that the lowest-energy spe-
cial state has exactly the same overlaps with the basis states ∣ ⟩n  
as the FSA eigenstate. For the special eigenstates in the middle of 
the many-body band, such as the one shown in Fig. 3c, the FSA 
overestimates the overlap, yet captures the oscillations. The agree-
ment between the FSA and exact eigenstates is highly surprising, 
and it further supports the unusual nature of the special eigen-
states. Indeed, a basis that has only L +  1 states, each concentrated 
in small parts of the Hilbert space, would provide an extremely 
poor approximation for a generic highly excited eigenstate of a  
thermalizing system of size L.

To provide further insights into the structure of special eigen-
states, we study their participation ratios in the product state basis. 
The second participation ratio, PR2, of the eigenstate ψ∣ ⟩  is defined 
as a sum of all wavefunction coefficients, α ψ= ∑ ∣⟨ ∣ ⟩ ∣αPR 2

4, where 
α labels all distinct product states in the inversion symmetric zero-
momentum sector. For ergodic states, one expects that PR2 decreases 
as the inverse Hilbert space dimension of the corresponding sector. 
This is indeed what we observe in Fig. 3d for ⟨ ⟩PR 2 av

 averaged over 
all eigenstates (with E ≠  0, see below) in the middle two-thirds of the 
full energy band. At the same time, PR2 averaged over special eigen-
states from the same energy interval also decreases exponentially 
with the system size, yet being exponentially enhanced compared 
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Fig. 3 | Scarred many-body states in the FSA approximation. a, Scatter plot of the overlap of many-body eigenstates of the Hamiltonian equation (1) with 
the Z∣ ⟩2  product state reveals a band of special eigenstates separated from the remaining eigenstates. Crosses denote overlaps with eigenstates from the 
FSA approximation, which agree very well with exact results. The density of data points (shown in the middle of the graph) illustrates the tower structure 
in the overlaps. b,c, Squared overlap between the basis vectors of the FSA approximation ∣ ⟩n  and the exact eigenstates (black) or approximate FSA 
eigenstates (red) for the ground state (b) and for the state in the special band adjacent to energy E =  0 (c). d, Participation ratios of special eigenstates 
decay parametrically slower compared to the average participation ratio of all states within the same energy range. Dashed line shows the inverse Hilbert 
space dimension. All data are for L =  32 in the inversion-symmetric, zero-momentum sector (equivalent results are obtained in the other symmetry sector 
where Z∣ ⟩2  has support).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATure PhySiCS | www.nature.com/naturephysics

http://www.nature.com/naturephysics


Articles NaTuRe PHysIcs

to ⟨ ⟩P2 av
. The exponential enhancement of PR2 is evident in Fig. 3d 

and its persistence for chains of up to L =  32 sites provides strong 
evidence for the existence of special states even in the thermody-
namic limit.

In addition, the enhancement of the participation ratio for special 
eigenstates evidences their concentration in some subregions of the 
Hilbert space. This suggests that special eigenstates are equivalent 
to the many-body version of quantum scarred wavefunctions that 
concentrate in the vicinity of unstable periodic classical orbits in 
the single-particle quantum chaos. The success of the FSA in yield-
ing a good approximation to special eigenstates shows that the ‘spe-
cial trajectory’ in the present case connects the two different charge 
density wave states, Z2 and Z ′

2. This provides a natural explanation 
for the unusual dynamics observed in Fig. 2 and in experiment25, 
including the revivals in the many-body fidelity starting from the 
Z2 initial state shown in Supplementary Information. Finally, we 
have found evidence that other states, for example, ∣∙∘∘∙∘∘…⟩ , lead 
to similar behaviour to the Z2 state, although at present it is not clear 
how to determine all such configurations.

Level statistics and zero modes
Above we suggested a connection between special states, non-ergo-
dic dynamics and quantum scars. However, an alternative explana-
tion for the unusual behaviour observed could be some proximate 
integrability33,34. Indeed, the Hamiltonian equation (1) can be seen 
as a deformation of the ‘golden chain’ introduced in ref. 15, which 
is Yang–Baxter integrable. However, the present model cannot be 
treated as a weak deformation of the ‘golden chain’15, as the two 
Hamiltonians differ by several terms with O(1) coefficients.

To investigate possible integrability, in Fig. 4 we studied the level 
statistics of the model in equation (1), which is a common diag-
nostic in the context of both single-particle and many-body quan-
tum systems35,36. Fig. 4 reveals that even for relatively small system 
size, there is a pronounced level repulsion and the distribution of 
the energy level spacing is close to the semi-Poisson distribution, 
P(s) =  4se−2s (ref. 37), characterized by the level repulsion at s →  0 and 
an exponential tail. This is in sharp contrast with integrable systems, 
which always have Poisson level statistics. Moreover, on increasing 
the system size to L =  32, we observe that the level statistics steadily 
approaches the Wigner–Dyson distribution. The Wigner–Dyson 
level statistics, along with ballistic growth of entanglement, rule out 
the integrability-based explanation of the non-ergodic dynamics in 
the model in equation (1).

Another feature prominent in the inset of Fig. 4 is the peak in 
the otherwise Gaussian density of states. This peak is caused by a 
large number of states annihilated by the Hamiltonian, ψ∣ ⟩ =H 0, 
which form a degenerate subspace of zero modes. We find that the 
number of zero modes is given by a Fibonacci number; that is, their 
number grows exponentially with system size. For open boundar-
ies and even system size L, the zero energy degeneracy is given by 

= +Z FL 1L
2

. When L is instead odd, we have instead = −Z FL L 1
2

. In the 
Methods section we demonstrate that the emergence of zero modes 
and their count can be understood from the interplay between 
inversion symmetry and sublattice structure present in the graph 
representation of the Hamiltonian (Fig. 1). This additional special 
property of the model in equation (1) appears to be compatible with 
the presence of scars: as can be seen in Fig. 3a, one of the special 
states is also a zero mode.

We note that zero modes are stable with respect to introducing 
potential energy as long as it commutes with particle-hole symme-
try P and anticommutes with the inversion operator. An example 
of such potential energy is provided by the staggered chemical 
potential, ∑ −= Z( )i

L i
i1 , which does not change the number of zero 

modes in the model in equation (1) with OBC for even system 
sizes. Although our symmetry arguments allow us to enumerate  
all zero modes, the complete understanding of their algebraic 

properties and the precise relation to scars appear to be much more 
difficult problems.

Discussion
In summary, we have demonstrated the weak breakdown of eigen-
state thermalization in the Fibonacci chain. This breakdown is 
associated with a band of special eigenstates that we identified as 
‘quantum many-body scars’. These eigenstates are analogues of sin-
gle-particle chaotic wavefunctions, but with scars concentrated in 
parts of the Hilbert space. Moreover, as shown transparently by our 
tight-binding method, scars can be experimentally probed by ini-
tializing the system in special states, such as ∣∙∘∙∘…⟩  and ∣∘∙∘∙…⟩ .  
The ensuing quantum dynamics then remains concentrated on a 
very specific subset of the Hilbert space, giving rise to robust oscil-
lations even in very large systems.

We emphasize that our findings are qualitatively different from 
previous proposals of many-body localization in translation-invari-
ant models22,38–48, where the potential energy was designed to make 
most of the processes off-resonant, leading to ergodicity breaking. 
In contrast, the model in equation (1) does not have any potential 
energy, and features ballistic propagation of entanglement. Our 
study thus suggests the existence of a new universality class of quan-
tum dynamics, which is neither fully thermalizing nor many-body 
localized, and which we attribute to the presence of a local dynami-
cal constraint. This opens many exciting research directions that 
could lead to a better understanding of weakly non-ergodic systems. 
In particular, the analogy with quantum scars should be put on a 
firmer footing. This requires a more rigorous generalization of the 
concept of ‘trajectory’ (in the sense of single-particle quantum scars) 
to the many-body case. Full classification and understanding of all 
such trajectories and their ‘parent states’ also remains an open prob-
lem. The FSA presented here may be regarded as a first step in these 
directions. Another open question concerns the precise relationship 
between quantum scars and other unusual aspects of the model, 
such as the existence of zero modes. We have demonstrated the 
compatibility of these two phenomena in the model of equation (1),  
but we expect scars to be more generic than the zero modes, as their 
existence does not appear to rely crucially on a symmetry of the 
model. In Supplementary Information we illustrate the stability of 
scarred eigenstates to various perturbations.

While the questions formulated above may be addressed in the 
context of the specific model of equation (1), our work motivates 
the search for similar behaviour in different kinetically constrained 
models. It would be highly desirable to understand the features of 
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constrained models that give rise to the non-ergodic dynamics.  
In particular, the model of equation (1) is a ‘projection’ of a trivial 
paramagnet Hamiltonian, thus the projection of other non-interact-
ing models might be a promising direction in such a search. Provided 
one identifies a broader class of ‘quantum scarred’ models, these can 
be used to engineer many-body states with long coherence times 
in the existing quantum simulators49,50. An obvious direction is to 
exploit the compatibility between scars and zero modes, which would 
provide an exceptionally long-lived storage and possible manipula-
tion of quantum information. Such endeavours would hopefully also 
uncover the interesting connections between quantum dynamics 
and the spectral theory of graphs, and lead to a better understanding 
of different universality classes of thermalizing systems.
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Methods
FSA and error analysis. To better understand the approximation involved in  
the FSA, we compare it with the Lanczos algorithm51, where the initial vector can 
be arbitrary and the propagation is instead performed by the full Hamiltonian, 
H+ +  H−. By contrast, equation (5) implies that in the exact FSA the backward 
propagation results in a previous vector in the basis, ∣ + ⟩−H n 1  =  β ∣ ⟩nn . Although 
this holds exactly for the non-interacting Hamiltonian ∑ Xi i, the presence of 
projectors makes this relation approximate. To quantify the error per iteration of 
the FSA we take the difference of the two terms and multiply from the left with 
⟨ ∣ +n H  to express the error as a scalar quantity. The error function can be  
written as

β= ∣⟨ ∣ ∣ ∕ − ∣+ −n n H H nerr( ) 1 (6)n
2

where err(n) =  0 is equivalent to ∣ + ⟩−H n 1  =  β ∣ ⟩nn . The division with βn
2 

makes the error independent of the magnitude of βn. Numerically we find that 
err(n) ≈  0.2% for L =  32 and has a decreasing trend as we increase the system size, 
which is promising in terms of scaling the method to the thermodynamic limit. 
As an additional error measure, the average energy difference between the exact 
eigenstates in the Z2-band and the eigenstates of HFSA for L =  32 is ̄Δ ∕ ≈E E 1%, 
which further supports the accuracy of the FSA scheme.

Derivation of the zero mode count. To derive the zero mode count and to 
understand its origin, we reformulate the problem of finding eigenstates as a 
hopping problem on a graph with vertices corresponding to product states in the 
constrained Hilbert space. An example of such a graph for L =  6 was illustrated in 
Fig. 1. The quantum many-body problem becomes equivalent to a single-particle 
hopping on this graph. Since the application of any term in the Hamiltonian 
changes the number of excitations (• ) by ± 1, the graph has a bipartite structure 
with even/odd sublattices corresponding to the product states with an even/odd 
number of excitations.

It is well known that bipartite lattices support zero modes, with their number 
lower-bounded by the difference between the number of sites in two sublattices52,53. 
However, in the present case it is crucial to account for inversion symmetry I, which 
splits the Hilbert space into two sectors with I =  ± 1 and is compatible with a bipartite 
structure. The inversion-odd sector does not include any inversion-invariant product 
states, for example, the basis state ∘ • ∘ ∘ • ∘  does not belong to the I =  − 1 sector of the 
L =  6 chain. When the system size L is even, all inversion-symmetric states have an 

even number of excitations, and the number of such states is given by ZL =  +F 1L
2 ,  

where Fn denotes the nth Fibonacci number. Hence in the I =  − 1 sector the even 
sublattice of the graph will have a deficit of inversion-symmetric states, leading to 
the presence of ZL zero modes. In this way, we can directly classify the zero-mode 
states for other cases. For example, when L is odd, the number of zero modes is 
ZL =  −F L 1

2
. The counting of zero modes for PBC can be determined similarly.

Interestingly, the many-body wavefunctions of the zero mode eigenstates 
may be chosen such that they all have integer coefficients in the product state 
basis (modulo overall normalization). This might be anticipated from the fact 
that the Hamiltonian matrix elements are all integers, and the solutions to the 
zero mode condition can be obtained by Gaussian elimination. Nevertheless, 
the decomposition into integers is suggestive of the existence of a recursive 
relation, which bears curious similarity to the Jack polynomials that appear in the 
Calogero–Sutherland model54 and the fractional quantum Hall effect55. In the latter 
case, model Hamiltonians can be defined that enforce local constraints in direct 
analogy with equation (1), and the quasihole excitations (whose number grows 
exponentially, determined by the constrained Hilbert space) appear as exact zero 
modes of the Hamiltonian, with integer coefficients in the product state basis. 
Although we do not believe there are direct physical similarities between these 
models, it would be interesting to elucidate their mathematical relations.

Data availability. The data that support the plots within this paper and other 
findings of this study are available at https://doi.org/10.5518/335.
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