Analyse statistique générale
statistiquesPrincipal component analysis
https://en.wikipedia.org/wiki/Principal_component_analysisCurse of dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionalityStatistical paradoxes wiki category
https://en.wikipedia.org/wiki/Category:Statistical_paradoxesRandom Data : Analysis and Measurement Procedures (4th ed) - Bendat & Piersol, 600p
How Not To Lie With Statistics: The Correct Way To Summarize Benchmark Results (the geometric mean is the only one meaningful for normalized numbers, the arithmetic mean gives inconsistent results for adimensionalized numbers)
Bootstrapping (statistics)
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)Permutation test
https://en.wikipedia.org/wiki/Permutation_testProblèmes inverses
problèmes-inversesInverse problem
https://en.wikipedia.org/wiki/Inverse_problemRegularization
https://en.wikipedia.org/wiki/Regularization_(mathematics)Problèmes Inverses - Centrale Paris
http://perso.ensta-paristech.fr/~mbonnet/invdssc.pdfReconstruction d’images de tomographie (maths) - Isabelle BLOCH, Télécom ParisTech, 30p
https://perso.telecom-paristech.fr/bloch/ATIM/tomo.pdfPrincipes de la tomodensitométrie - Pr. Ivan Bricault, slides
http://cerf.radiologie.fr/sites/cerf.radiologie.fr/files/Enseignement/DES/Archives-Documents/2016%20Bases%20TDM%20IBricault.pdfNon-line-of-sight imaging
non-line-of-sight-imagingShadows used to peer around corners (editorial for "Computational periscopy with an ordinary digital camera")
Computational periscopy with an ordinary digital camera - Saunders et al.
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-018-0868-6/MediaObjects/41586_2018_868_MOESM2_ESM.mp4Computational periscopy with an ordinary digital camera - Saunders et al.
Théorème de Radon
https://fr.wikipedia.org/wiki/Théorème_de_RadonDeconvolution
https://en.wikipedia.org/wiki/DeconvolutionPhase problem (crystallography / Fourier analysis)
https://en.wikipedia.org/wiki/Phase_problemOptimisation
optimisationVanishing gradient problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problemParadigmes d'Intelligence artificielle
AILearning with Opponent-Learning Awareness
https://arxiv.org/abs/1709.04326A DARPA Perspective on Artificial Intelligence
Hindsight Experience Replay (how can we be bad teachers) - Two Minute Papers
Latent Space Human Face Synthesis - Two Minute Papers
Équilibre de Nash -> problème courant des GANs
https://fr.wikipedia.org/wiki/Équilibre_de_NashUnsupervised learning
unsupervised-learningGenerative adversarial network
https://en.wikipedia.org/wiki/Generative_adversarial_networkApprentissage Artificiel, Concepts et algorithmes - 2nd ed, Cornuéjols & Miclet
Réseaux neuronaux
réseaux-neuronauxEvolving Neural Networks that are both Modular and Regular
Bidirectional recurrent neural networks
https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networksFlexible, High Performance Convolutional Neural Networks for Image Classification
http://www.ijcai.org/Proceedings/11/Papers/210.pdfTraitement du Signal
signalGénéralités
généralitésKramers–Kronig relations (~gain–phase relation, integral dispersion relation, Hilbert transform…)
https://en.wikipedia.org/wiki/Kramers–Kronig_relationsTraitement du signal - Stéphane Mallat, ENS
http://www.di.ens.fr/~mallat/papiers/Spoly.pdfTraitement du signal aléatoire - Olivier Besson/ISAE-SUPAERO
traitement-du-signal-aléatoireEstimation en traitement du signal
https://personnel.isae-supaero.fr/IMG/pdf/slides_estimation.pdfIntroduction to Spectral Analysis
https://personnel.isae-supaero.fr/IMG/pdf/slides_asp_eng.pdfTraitement d'antenne/array signal processing
traitement-d-antenneIntroduction to Array Processing - Olivier Besson/ISAE-SUPAERO
https://personnel.isae-supaero.fr/IMG/pdf/slides_array_eng.pdfMéthodes haute-résolution en analyse spectrale et localisation - Yves Grenier/Télécom ParisTech
https://perso.telecom-paristech.fr/rioul/liesse/2012liesse4/YG-slides.pdfPerformance Analysis of MUSIC, Root-MUSIC and ESPRIT DOA Estimation Algorithm
GitHub - morriswmz/doa-tools: A set of MATLAB functions for direction-of-arrival (DOA) estimation in array signal processing.
https://github.com/morriswmz/doa-toolsGitHub - morriswmz/doatools.py: A simple library for theoretical research on direction-of-arrival (DOA) estimation in array signal processing.
https://github.com/morriswmz/doatools.pyAnalyse spectrale
analyse-spectraleIntroduction to Spectral Analysis - Olivier Besson/ISAE-SUPAERO
https://personnel.isae-supaero.fr/IMG/pdf/slides_asp_eng.pdf(Épi)ⁿ-cycloïdes et l'éléphant de Fermi et Von Neumann
Imagerie & Computer Vision
imagerieAdaptive Thresholding Using the Integral Image
Hough Transform
https://en.wikipedia.org/wiki/Hough_transformRecalage d’images, PIV et corrélation d’images — Les bases théoriques
https://linuxfr.org/news/recalage-d-images-piv-et-correlation-d-images-les-bases-theoriquesRecalage d’images, PIV et corrélation d’images — Les logiciels
http://linuxfr.org/news/recalage-d-images-piv-et-correlation-d-images-les-logicielsAdversarial Examples that bool both Human and Computer Vision - Two Minute Papers #241
One Pixel Attack Defeats Neural Networks - Two Minute Papers #240
Universal Neural Style Transfer | Two Minute Papers #213
Neural scene representation and rendering - DeepMind
Aspects pratiques
aspects-pratiquesOutils
outilsPython Data Analysis Library — pandas: Python Data Analysis Library
https://pandas.pydata.org/scikit-learn: machine learning in Python
https://scikit-learn.org/stable/AutoML : la machine d'intelligence artificielle de Google qui a appris à se répliquer serait meilleure que les ingénieurs pour créer d'autres IA
https://www.developpez.com/actu/167725/AutoML-la-machine-d-intelligence-artificielle-de-Google-qui-a-appris-a-se-repliquer-serait-meilleure-que-les-ingenieurs-pour-creer-d-autres-IA/Adversarial Machine Learning
adversarial-machine-learningTODO lien avec sécu
awesome-adversarial-machine-learning: A curated list of awesome adversarial machine learning resources
https://github.com/yenchenlin/awesome-adversarial-machine-learningLearning boxing with almost no training data (and a very involved training curve) - Two Minute Papers
DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills
https://xbpeng.github.io/projects/DeepMimic/index.htmlSIGGRAPH 2018: DeepMimic paper (main video)
Understanding latency and measuring it right (most people do it wrong) - Gil Tene - React Conference