Équations de Navier-Stokes pour fluides incompressibles à densité constante
https://fr.wikipedia.org/wiki/Équations_de_Navier-Stokes#Fluides_incompressibles_homog.C3.A8nes_.C3.A0_viscosit.C3.A9_constanteFondamentaux
fondamentauxApproximation de Boussinesq
https://fr.wikipedia.org/wiki/Approximation_de_BoussinesqKorteweg–de Vries (KdV) equation
https://en.wikipedia.org/wiki/Korteweg%E2%80%93de_Vries_equationHelmholtz's theorems
https://en.wikipedia.org/wiki/Helmholtz%27s_theoremsTopological fluid dynamics
https://en.wikipedia.org/wiki/Topological_fluid_dynamicsReynolds decomposition
https://en.wikipedia.org/wiki/Reynolds_decompositionReynolds-averaged Navier–Stokes equations
https://en.wikipedia.org/wiki/Reynolds-averaged_Navier–Stokes_equationsShallow water equations (Équations de Barré de Saint-Venant)
https://en.wikipedia.org/wiki/Shallow_water_equationsPhénomènes, Modélisation & Systèmes
phénomènesUniversal Behavior of the Initial Stage of Drop Impact : Expression for droplet deformation
https://phys.org/news/2015-05-droplet-deformation-wide-range-applications.html#nRlvExtensive analysis of the collision and rebound of small droplets in a gas
Simulation of the spreading of a micro-droplet using a lattice-Boltzmann approach
Kelvin-Helmholtz Instability - Sixty Symbols
Effet Marangoni
https://fr.wikipedia.org/wiki/Effet_MarangoniCriteria for the onset of acceleration-induced cavitation
https://phys.org/news/2017-07-team-math-equation-cavitation.htmlDynamics of transient cavities (transient cavity of air in water created by the impact of a solid body), Duclaux et al., 2007
http://www.phys.ens.fr/~lbocquet/JFM-cavities-2007.pdfTourbillon de Taylor-Green
https://fr.wikipedia.org/wiki/Tourbillon_de_Taylor-GreenAllée de tourbillons de Karman
https://fr.wikipedia.org/wiki/Allée_de_tourbillons_de_KarmanModel of collective fish behavior with hydrodynamic interactions (minimisation d'énergie énergie d'un banc de poissons par effet d'aspiration)
https://arxiv.org/pdf/1705.07821.pdfHydraulic jumps
hydrolic-jumpsHydraulic jump
https://en.wikipedia.org/wiki/Hydraulic_jumpHydraulic Jump and Energy Dissipation with Sluice Gate
Energy dissipation of hydraulic jump in gradually expanding channel after free overfall
Fatal Currents (Submerged Hydraulic Jumps) - Low Head Dam Presentation
Digitation visqueuse
https://fr.wikipedia.org/wiki/Digitation_visqueuseForçage périodique en géométrie de Hele-Shaw et 3D : instabilités de Faraday, hystérésis, ondes localisés, brisure de symétrie
Albert Einstein et la tasse de thé de Mme Schrödinger
https://www.bibnum.education.fr/sites/default/files/analyse-einstein-the.pdfJames Thomson sur les feuilles de thé s'accumulant au milieu d'une tasse d'eau en rotation (1857) : « Elles y sont bien évidemment amenées par un courant le long du fond et dirigé vers le centre, en conséquence de la force centrifuge de la couche d’eau la plus basse, inférieure aux forces centrifuges des autres couches, à cause de la vitesse de rotation plus faible due au frottement sur le fond. Les particules étant plus lourdes que l’eau doivent, à cause de leur densité, subir une force centrifuge supérieure à celle de l’eau avec laquelle elles sont en contact; elles devraient donc avoir tendance à fuir le centre, mais le flux d’eau vers le centre vainc cette tendance et les ramène au centre. » En réalité, la force centrifuge est fictive, ce différentiel centrifuge n'explique pas la mise en mouvement de l'eau. Il faut passer par l'énergie potentielle qui apparaît quand la surface l’eau dans la tasse prend un profil concave. Ainsi y aura-t-il au fond un gradient de pression dirigé vers le centre, qui s’opposera à la force centrifuge dirigée vers l’extérieur.
Leidenfrost Wheels : why do Leidenfrost droplets move spontaneously, symmetry breaking between biased regime and self-propelled regime
Marangoni Bursting : Evaporation-Induced Emulsification of a Two-Component Droplet (water+alcool drop on oil bath)
Spin lattices (ferro and antiferro order) of walking droplets
How soap films resolve mazes ? Geometry matters in Marangoni flows
Vortex & rings
vortex-ringsThe Emergence of Small Scales in Vortex Ring Collisions
Vortex
https://en.wikipedia.org/wiki/VortexHalf vortex rings in a pool - Physics Girl
Square vortex ring oscillations - Physics Girl
Mechanism of axis switching in low aspect-ratio rectangular jets
Knotted vortex rings - Physics Girl
Helmholtz's theorems
https://en.wikipedia.org/wiki/Helmholtz%27s_theoremsTwo Vortex Rings Colliding - SmarterEveryDay
The Coexistence of Order and Chaos in C-major, at the boundary layer on a flat bottom, forced by a periodical flow
Lift and Wings : Why planes fly - Sixty Symbols
Lift and Wings : 3 inseparable effects at play : conservation of mass (air speeds up at the top because of the geometry), conservation of energy (Bernoulli effect : faster air -> lower pressure), and conservation of momentum (angle of attack : air deflected downwards)
Water Cavitation under High speed - Thunderf00t
Analytical consideration of droplet spreading on solid surfaces
https://phys.org/news/2017-05-theory-liquid-droplet-behavior-solid.htmlPourquoi les Bédouins portent des vêtements noirs
https://www.pourlascience.fr/sd/physique/le-bedouin-etait-en-noir-3402.phpHow Hard is the Human Powered Helicopter ?
https://www.wired.com/2012/06/how-hard-is-the-human-powered-helicopter/Tea leaf paradox
https://en.wikipedia.org/wiki/Tea_leaf_paradoxThe Tesla Valve : a one-way valve with no moving part, very interesting illustation of convergent and divergent flows
Le son des gouttes : d'où vient le 'ploc' ? - La Science S’Honore
A new insight on a mechanism of airborneand underwater sound of a drop impactinga liquid surface
Levitating liquids
levitating-liquidsThe Levitating Liquid Pendulum : how can rapidly shaking a liquid make unstable layers sable ⇔ rapidly shaking a pendulum make the top equil. pos. stable - Steve Mould
Inverted pendulums stabilization
inverted-pendulumsAnti-gravité : comment un bateau peut flotter à l'envers
https://theconversation.com/anti-gravite-comment-un-bateau-peut-flotter-a-lenvers-147298Floating under a levitating liquid
https://arxiv.org/ftp/arxiv/papers/2003/2003.04777.pdfSupersonic Baseball Cannon - Smarter Every Day 242
Bizarre Spinning Glue - Steve Mould
Bank effect (or why the Ever Given was stuck)
https://en.wikipedia.org/wiki/Bank_effectDo Pumps Create Pressure or Flow ? System curves. - Practical Engineering
A separated vortex ring underlies the flight of the dandelion
a-separated-vortex-ring-underlies-the-flight-of-the-dandelionA separated vortex ring underlies the flight of the dandelion
Extended Data Fig. 1 - SVR visualization of the wake of 10 fixed dandelion seeds - The flow speed is half of the terminal velocity of the seed. Each image was obtained using long-exposure photography.
Extended Data Fig. 2 - SVR visualization of the wake of 10 freely flying dandelion seeds - a–j, Each image corresponds to a snapshot from a video of the flight of the dandelions in the wind tunnel. The images show the seeds as they pass through the laser sheet, and the SVR may be difficult to identify in some panels because of the orientation of the laser sheet with respect to the axis of the SVR.
Extended Data Fig. 3 - The breakdown in symmetry in the SVR of dandelion seeds - a, b, At low speeds, the SVR is axisymmetric. a, Contrast-enhanced image. b, Original image. c, d, At higher speeds, this symmetry is lost. c, Contrast-enhanced image. d, Original image. a–d, Experiments were repeated independently on n = 10 biological samples, with similar results. e, f, The axisymmetry of SVR at low Re (e) breaks down at higher Re (f).
Extended Data Fig. 4 - Images of porous disks showing the resolution of the technique for disks of various porosities - a, b, Impervious disk. c–f, A disk with 33% porosity. g, h, A disk with 55% porosity. i, j, A disk with 75% porosity. k–p, A disk with 89% porosity.
Extended Data Fig. 5 - Steady and unsteady wake behind porous disks and pappi - Video snapshots are shown. a–d, The flow visualization behind a solid disk, with a steady wake (a) and an unsteady wake at three time points within one period of vortex shedding (b–d). e–h, The flow around a porous disk (ε=0.75) with a steady wake (e) and an unsteady wake at three time points within one period of vortex shedding (f–h). i–l, The wake behind a dandelion sample with a steady SVR (i) and at three time points within one period of vortex shedding (j–l)
Extended Data Fig. 8 - The flow past a porous disk using direct numerical simulations and boundary integral methods - a–c, The axial velocity uz/U (a), pressure p/ρU² (b) and streamlines (c), showing the presence of an SVR with upstream and downstream stagnation points z_su and z_sd, respectively. d, The reduction in the drag force on filaments within an array moving at slow speeds calculated using a boundary integral method. The force D_i on the ith filament of a rectangular pappus, divided by the drag force for an isolated filament D_0.
Video 1 - SVR visualization in the wake of a freely flying dandelion seed - In this video, the dandelion seed is allowed to fly freely in the wind tunnel, and the SVR is visualized as the dandelion passes through the laser sheet. These experiments were repeated independently for n = 10 biological replicates with similar results.
Video 2 - SVR visualization in the wake of a fixed dandelion seed (low speed) - In this video, the SVR is visualized by keeping the seed fixed in a low speed air flow. These experiments were repeated independently for n = 10 biological replicates with similar results.
Video 4 - SVR visualization in the wake of fixed disks of varying porosities - In this video, there are four panels. The bottom panels are visualizations of the flow past an impervious disk in steady (left) and unsteady (right) conditions. The top panels are visualizations of the flow past a porous disk (75% porous) in steady (left) and unsteady (right) conditions. Similar experiments were performed 15 times (each experiment had a different Reynolds number) for each disk with similar results.
Video 5 - SVR visualization in the wake of fixed disks of varying porosities (high porosity) - In this video, there are four panels. The bottom panels are visualizations of the flow past a porous disk (89% porous) in steady (left) and unsteady (right) conditions. The top panels are visualizations of the flow past a porous disk (92% porous) in steady (left) and unsteady (right) conditions. Similar experiments were performed 20 and 17 times (each experiment had a different Reynolds number) for the 89% and 92% porous disks respectively with similar results.
A vehicule powered by and going faster than the wind ! - Veritasium
The Bizarre Paths of Groundwater Around Structures - Practical Engineering
An Introduction to Theoretical Fluid Dynamics, Stephen Childress, 2008, 177p
https://www.math.nyu.edu/faculty/childres/fluidsbook.pdfMIT Fluid Mechanics
Isabelle Gallagher, 13/12/2014 - Histoire, Résolution et Stabilité des équations de Navier-Stokes
L.D. Landau, E.M. Lifshitz (1959). Fluid Mechanics. Vol. 6 (1st ed.)
L.D. Landau, E.M. Lifshitz (1987). Fluid Mechanics. Vol. 6 (2nd ed.)
Hydrodynamique Physique, 3è ed. - Hulin, Guyon, Petit