Fondamentaux
fondamentauxChamps permanents, Résumé CPGE
Induction, Résumé CPGE
Équations de Maxwell, Résumé CPGE
Jefimenko's equations (autre formulation de l'électromagnétisme)
https://en.wikipedia.org/wiki/Jefimenko%27s_equationsLe théorème de Poynting dans les régimes quasi-stationnaires
Space charge (Child–Langmuir and Mott–Gurney laws)
https://en.wikipedia.org/wiki/Space_chargeLois de l'Induction électromagnétique
https://fr.wikipedia.org/wiki/Induction_électromagnétique#Lois_de_l.27inductionLarmor formula
https://en.wikipedia.org/wiki/Larmor_formulaForce d'Abraham-Lorentz
https://fr.wikipedia.org/wiki/Force_d%27Abraham-LorentzWheeler–Feynman absorber theory - théorie cohérente de l'électrodynamique, sans self-interaction
https://en.wikipedia.org/wiki/Wheeler–Feynman_absorber_theoryEarnshaw's theorem
https://en.wikipedia.org/wiki/Earnshaw's_theoremCausality in the Coulomb gauge - Brill, Goodman, 1967
Remarks on the fundamental postulates on field singularities in electromagnetic theory
Maxwell stress tensor
https://en.wikipedia.org/wiki/Maxwell_stress_tensorÉlectrostatique T2 - Chap. Conducteurs - Durand
Ondes Électromagnétiques
ondes-emRésumé CPGE - Ondes EM dans le vide
Cylindrical & Guided Waves - Daniel S. Weile
Plasmas, Réflexions, Guides
Schumann resonances
https://en.wikipedia.org/wiki/Schumann_resonancesÉlectromagnétisme dans matériaux
milieuxElectric and magnetic fields in matter topics
https://en.wikipedia.org/wiki/Category:Electric_and_magnetic_fields_in_matterMagnétisme "classique"
magnétismeRésumé CPGE - Transformateurs
Conducteurs électriques - L3
Magneto-optic effects
https://en.wikipedia.org/wiki/Magneto-optic_effectMagnetic domain
https://en.wikipedia.org/wiki/Magnetic_domainApplications des magnétostrictifs, La Recherche, Septembre 95, p900
Wiedemann–Franz law
https://en.wikipedia.org/wiki/Wiedemann–Franz_lawEinstein–de Haas effect
https://en.wikipedia.org/wiki/Einstein–de_Haas_effectEffet Barnett : magnétisation d'un matériaux mis en rotation
https://fr.wikipedia.org/wiki/Effet_BarnettGyromagnetic and Electron-Inertia Effects - 1935 review, Barnett
Handbook of Magnetism and Advanced Magnetic Materials, Vol1: Fundamentals and Theory
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470022175.htmlMatière condensée quantique
quant-cond-matPhysique des plasmas & Magnétohydrodynamique
plasmasMomentum of an electromagnetic wave in dielectric media : solving the Abraham-Minkowski controversy : both momentum tensors are incomplete without matter counterpart
https://arxiv.org/pdf/0710.0461.pdfSystèmes
emag-sysExos Colles 1
Exos colles 2
Coeff Fresnel
Confinement magnétique
Magnetic mirror
https://en.wikipedia.org/wiki/Magnetic_mirrorPression magnétique
https://fr.wikipedia.org/wiki/Pression_magnétiqueKelvin Water Dropper
En combien de temps s'allume une lampe connectée par un loooooong fil ?
en-combien-de-temps-s-allume-une-lampe-connectée-par-un-loooooong-filThe Big Misconception About Electricity - Veritasium [misleading and too simplistic]
How Wrong Is VERITASIUM? A Lamp and Power Line Story - ElectroBOOM [tells the full story]
I bought 1000 meters of wire to settle a physics debate - AlphaPhoenix [experimental demonstration]
My biggest issue with Derek's illustration is that he ignores the density of the fields. All his poynting vectors are the same magnitude and therefore the viewer is led to believe that the energy flowing through the air is just as big a contributor as around the wires. In reality, voltage applied to a wire induces an electrical pressure wave (E field) to the electronics spreading out at essentially the speed of light. As each electron reacts to this pressure wave, they are pushed or pulled. As each electron is accelerated, it induces what we refer to as a magnetic field, which is a model that shows the effect that the movement of that electron has on all the surrounding electrons. What frustrates me about Derek's explanation is that he seems to imply that the wire is inconsequential. This is absolutely not true as the wire houses all the electrons in a very mobile state that allows the E field to get them moving to allow the creation of a B field. In addition, field theory shows that the density of the B field is highest right at the electron moving and drops very quickly as you move away, therefore the pointing vectors should be very "thick" right on the wires and get much much less consequential as you move away from the wires. As Derek setup the problem, he is correct, the light will flicker 1m/c s after you close the switch, but only due to the capacitive and then inductive coupling of the wires, full power will take much, much, much, much longer due to the transmission line Dave discusses taking a very long time to settle out.
Watch electricity hit a fork in the road at half a billion frames per second - AlphaPhoenix
Électromagnétisme + Relat
CFTsCours d'électrostatique-électrocinétique - Jonathan Ferreira, Grenoble I, 2002, 64p
http://ipag.obs.ujf-grenoble.fr/~ferreirj/enseignement/elec_complet.pdfCours de magnétostatique - Jonathan Ferreira, Grenoble I, 2002, 64p
http://ipag.obs.ujf-grenoble.fr/~ferreirj/enseignement/magneto_complet.pdfClassical Electrodynamics - J.D. Jackson, 3rd ed.
Solution booklet for J.D. Jackson's 1st ed. Classical Electrodynamics
L.D. Landau, E.M. Lifshitz (1960). Electrodynamics of Continuous Media. Vol. 8 (1st ed.)
L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii (1984). Electrodynamics of Continuous Media. Vol. 8 (2nd ed.)
Singular electromagnetic fields and sources - J. van Bladel, IEEE Press, 1991
Cours d'Électrodynamique (électromag,relat,ondes) - Université de Genève, Ruth Durrer, 2006
New Foundations for Applied Electromagnetics: The Spatial Structure of Electromagnetic Fields - Said Mikki, Yahia Antar, 600p
Bremsstrahlung
https://en.wikipedia.org/wiki/BremsstrahlungSynchrotron radiation
https://en.wikipedia.org/wiki/Synchrotron_radiation